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Results of the SeaWiFS Data Analysis Round-Robin, July 1994 (DARR-94)

PREFACE

ne of the primary objectives of the SeaWiFS Project, as stated in Volume 1 of this technical memorandum
series (Hooker et al. 1992), is "to achieve radiometric accuracy of 5% absolute and 1% relative, water-

leaving radiances to within 5% absolute, and chlorophyll a concentration to within 35% over the range of 0.05-

50.0 mg m-3. '' This objective presents a challenge to the ocean color community, and the SeaWiFS Calibration

and Validation Team (CVT) has initiated a number of activities directed towards attaining these accuracy goals
which include

1) The SeaWiFS Intercalibration Round-Robin Experiments (SIRREXs),

2) The development of in situ measurement protocols (Mueller and Austin 1992 and 1995),

3) The construction of the SeaWiFS transfer radiometer (SXR),

4) Support for the Marine Optical Buoy (MOBY), and

5) Support for the collection of high quality bio-optical data sets.

These activities address the issues of instrument calibration, data collection techniques, and bio-optical data set

diversity.

An additional aspect to the problem is the methodology by which vertical profiling radiometric observations are

extrapolated to the surface so field observations can be compared with the satellite derived products or used

as inputs for satellite bio-optical algorithms. The first SeaWiFS Data Analysis Round-Robin (DARR-94) was
convened for the purpose of comparing the various techniques being used by the ocean color community, to

clarify the sources of error, and work toward establishing standard methods for deriving the relevant products,

e.g., water-leaving radiance and diffuse attenuation. This technical memorandum summarizes the results of
DARR-94 and establishes that careful data analysis is necessary and that errors in the analysis can lead to very

large errors in the derived fields. As a result of DARR-94, it is clear that continued refinement of radiometric
data analysis techniques is necessary. Therefore, as with the instrument round-robins, the CVT will promote

additional analysis round-robins in a continuing effort to attain the SeaWiFS mission objectives.

Greenbelt, Maryland

February 1995

-- C. R. McClain
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ABSTRACT

The accurate determination of upper ocean apparent optical properties (AOPs) is essential for the vicarious

calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument and the validation of the derived

data products. To evaluate the role that data analysis methods have upon values of derived AOPs, the first

Data Analysis Round-Robin (DARR-94) workshop was sponsored by the SeaWiFS Project during 21-23 July,

1994. The focus of this intercomparison study was the estimation of the downwelling irradiance spectrum just

beneath the sea surface, Ed(0-, A); the upwelling nadir radiance just beneath the sea surface, L_(0-, A); and the

vertical profile of the diffuse attenuation coefficient spectrum, Kd(z, A). In the results reported here, different

methodologies from four research groups were applied to an identical set of 10 spectroradiometry casts in order

to evaluate the degree to which data analysis methods influence AOP estimation, and whether any general

improvements can be made. The overall results of DARR-94 are presented in Chapter 1 and the individual

methods of the four groups are presented in Chapters 2-5. The DARR-94 results do not show a clear winner

among data analysis methods evaluated. It is apparent, however, that some degree of outlier rejection is required

in order to accurately estimate Lu (0-, A) or Ed(O-, _). Furthermore, the calculation, evaluation and exploitation
of confidence intervals for the AOP determinations needs to be explored. That is, the SeaWiFS calibration and

validation problem should be recast in statistical terms where the in situ AOP values are statistical estimates
with known confidence intervals.

PROLOGUE

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS)

Project is tasked with executing a program to acquire the

global SeaWiFS data set, validate and monitor its accuracy

and quality, process the radiometric data into geophysical
units using a set of atmospheric and bio-optical algorithms,

and distribute the final products to the scientific commu-

nity through the Goddard Space Flight Center (GSFC)

Distributed Active Archive Center (DAAC). The SeaWiFS
data products are prominent components of major scien-

tific programs studying global climate change, including

the Joint Global Ocean Flux Study (JGOFS), the World

Ocean Circulation Experiment (WOCE), and the Global

Ocean Ecosystems dynamics (GLOBEC) programs.
The accurate determination of upper ocean apparent

optical properties (AOPs) is essential for the vicarious cal-
ibration of the SeaWiFS instrument and the validation of

the derived data products. The only economically feasi-

ble approach for minimizing spatial biases is to maximize

the acquisition of global in situ measurements by solicit-
ing contributions of data from the oceanographic commu-

nity at large, and to combine them with data collected

from SeaWiFS sponsored activities into a single database.
The SeaWiFS Calibration and Validation Team (CVT)

have responded to this need by implementing the SeaWiFS

Bio-Optical Archive and Storage System (SeaBASS). Data

from a variety of sources are expected to go into this data-

base including

• The Bermuda Bio-Optics Project (BBOP),

• The Bermuda Atlantic Time-series Study (BATS),

• The California Cooperative Fisheries Institute (Cal-

CoFI),

• The JGOFS Equatorial Pacific (EqPac) process

study,

• The Gulf of Mexico Experiment (GOMEX), and

• The Tropical Ocean Global Atmosphere (TOGA)

Coupled Ocean-Atmosphere Response Experiment

(COARE).

The accuracy of any AOP determination is a function

of the quality of the measurement, and the differences in

the data analysis method employed. In order to minimize

observational errors, the SeaV_riFS Project has sponsored a

variety of multidisciplinary workshops to outline the obser-

vations and sampling protocols required for bio-optical al-

gorithm development (Mueller and Austin 1992 and 1995).

One of the consequences of the workshops was the estab-
lishment of a series of SeaWiFS Intercalibration Round-

Robin Experiment (SIRREX) activities to establish and

advance the state of the art for calibrating the instruments

used in field activities, e.g., the Marine Environmental Ra-

diometers (MERs).

Although the SeaBASS architecture allows for some

quality control (Hooker et al. 1994), it is based primar-

ily on resolving obvious clerical errors in the reporting of

where and when data acquisiton activities took place--it

does not attempt to quantify differences in the data anal-

ysis methods employed. The latter is, in part, a function

of how the individual software packages deal with data de-

spiking, binning and smoothing, and removing possible ar-

tifacts from changes in surface illumination, ship shadow,

or reflections and wave focusing.

The focus of this intercomparison study is the estima-

tion of the downwelling irradiance spectrum just beneath

the sea surface, Ed(O-, A), the upwelling nadir radiance
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just beneaththe seasurface,L_(0-,)_), and the verti-

cal profile of the diffuse attenuation coefficient spectrum,

Kd(z,A). In the results reported here, different method-

ologies from four research groups are applied to the afore-

mentioned spectroradiometry profiles in order to evaluate

the degree to which data analysis methods influence AOP

estimation, and whether any general improvements can be

made. The four groups involved were as follows:

1. The University of California at Santa Barbara

(UCSB) Institute for Computational Earth Sys-

tem Science (ICESS),

2. San Diego State University (SDSU) Center for

Hydro-Optics and Remote Sensing (CHORS),

3. The Naval Research Laboratory (NRL), and

4. Scripps Institution of Oceanography (SIO).

The overall results of the first Data Analysis Round-Robin

(DARRone) are presented in Chapter 1 and the individual

methods of the four groups are presented in Chapters 2-5,

respectively. The attendees to the workshop are given in
Appendix A. A summary of the material presented in each

Chapter is given below.

1. The First SeaWiFS Ocean Optics DARR

This study shows that with good data (near-constant

incident irradiance), the different analyses produce esti-

mates of L,,(0-, _) and Ed(O-, A) that are within 3-40

of the aggregate mean value. The statistical uncertainty
in determining Eu(O-, )_) are considerably larger (approx-

imately 7%) than those for Lu(0-,A) (about 2%). These

differences can be attributed to geophysical noise sources in

the raw data streams which appear to be primarily due to

the aliasing of surface wave induced glinting in the vertical

radiometric profiles. Furthermore, the profile of the diffuse

attenuation coefficient spectrum, Kd(z,)_), can be repli-
cated to better than 5% with the different analyses. These

differences account for much of the total 5% uncertainty
that is tolerated for SeaWiFS calibration and validation

purposes (Mueller and Austin 1995). For bad data, large

deviations among methods occur. The DARR-94 results

do not show a clear winner among data analysis meth-

ods evaluated. It is apparent, however, that some degree

of outlier rejection is required in order to accurately es-

timate Lu(0-, A) or Ed(O , A). Possible solutions include
manual or automated data disqualification, robust curve

fitting routines, or extrapolation using the incident flux

(not fully evaluated in this study). Furthermore, the calcu-

lation, evaluation and exploitation of confidence intervals

for the AOP determinations needs to be explored; that is,

the SeaWiFS calibration and validation problem should be
recast in statistical terms where the in situ AOP values are

statistical estimates with known confidence intervals. This

is critical for the long-term assessment of ocean color im-

agery and its calibration and validation using in situ data

sets. Finally, there is no substitute for good in situ data

for accurately determining AOPs. Good at-sea procedures

and clear skies are essential and cannot be over empha-
sized.

2. The BBOP Data Processing System

The BBOP group has developed a data analysis method

based on the philosophy that they will take more casts then

they need. For example, the BBOP collects over 1,000 pro-
files each year in order to link time-series observations of

primary production rates to bio-optical parameters. This

means suspect data will be flagged and eliminated from

future consideration rather than corrected. A computer

data processing system capable of efficiently calibrating,

processing, reducing, analyzing, and interpreting the data

in a timely manner is presented. The processing system is
comprised of a suite of American National Standards In-

stitute (ANSI) C++ programs that read and operate on a

specified file format, the least common denominator (LCD)
data file. The LCD file contains all relevant data and

metadata, which include calibration information and at-

sea comments, in a single easy-to-read file that conforms

to American Standard Code for Information Interchange

(ASCII) standards. UNIX shell scripts are used in the

control of data flow as well as error and log handling. The
final product is a binned spectroradiometer data set with

relevant derived parameters included [Kd(z,)_), Rr_(Z,)_),

Ed(0-, A), etc.] that may be disseminated to other groups
or databases.

3. Integral Method for Analyzing Irradiance and
Radiance Attenuation Profiles

The CHORS group has taken a very different approach
and has developed an integral method for determining the

slope of the log-transformed irradiance profile, Kd(z,A),

and its intercepts, Lu(0-, A) and Ed(O-, A). Their analy-

sis goals are driven by the fact that they must make good
estimates of AOPs from every cast in order to meet their

own as well as their colleagues' scientific objectives. The

CHORS method determines the profile of K for a vertical

profile of irradiance or radiance through a least-squares fit

to the optical depth profile, expressed as the integral of K

from the surface to each depth z. The measured optical
depth at each z is calculated as the natural logarithm of

the surface-to-depth ratio of measured irradiances (or radi-
ances). The K profile is represented analytically by Hermi-

tian cubic polynomials connecting nodes at several discrete
depths, with unknown values of K and its vertical deriva-

tive at each node as coefficients. These polynomials are
integrated analytically to each z, which allows each mea-

sured optical depth to be set equal to a polynomial with

node values of K and its derivative at the node depths.

This results in an overdetermined set of equations corre-

sponding to all measured depths in the irradiance (or radi-

ance) profile, which is solved using classical least-squares
methods. Prior to solution, irradiance data are normal-

ized to minimize effects of surface irradiance variations,
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andsegmentsnearmajoranomalies(rewritingfromstrong
cloudshadowsorshipshadows)areelimhatedfromthefit.
In contrastto theclassicalderivatives_lutionsfor K, the

integral approach ensures a correct representation of total

attenuation through missing data intervals. The CHORS

method utilizes human-selected data rejection and node

setting, and is developed with a sophisticated graphical

user interface (GUI). It should be noted that the determi-

nation of the L_(0-, A) and Ed(O-, _) values strongly affect

the fit to the entire profile.

4. Automated and Interactive Bio-Optical

Processing Package

The NRL method has been developed with the same

analysis goal as the CHORS method. Namely, they need
to make accurate determinations of AOPs from every cast

during a cruise to achieve their science goals. NRL has
developed a multiple level, prediction-correction software

package called Automated and Interactive Bio-Optical Pro-
cessing (AIBOP). The data is processed in two parts: first

the is despiked and binned using an automated routine,

and second, the effects of changes in surface illumination,

ship shadow, or reflection and near surface effects (such

as wave focusing) are removed using interactive spectral

processing. The second level method is not used for the
DARR-94 comparisons as many of the data sets used were

missing required data types. Once the data is processed,
routines are provided for calculating extinction coefficients,
surface radiance and irradiance values, and remote sensing

reflectance.

5. The SIO Method

For DARR-94, the SIO group employed a bulk method

for deriving AOPs from spectroradiometry profiles. The

bulk approach has been long employed in the past and
much of what is known about AOPs has come from us-

ing this approach. The bulk method has been used in

the past by the SIO group, although, they are not doing

so presently. The bulk approach fits a straight line to the

log-transformed irradiance and radiance profiles within the
oceanic mixed layer. The fluxes just below the sea surface

are estimated from the exponentiated intercept and the

slope gives a mixed layer averaged diffuse attenuation co-

efficient, Kd(Zo, A). This method provides only a single

estimate of Kd(Zo, A) and cannot be used to determine the

depth dependence of Kd(Z, A). One distinct advantage of

the bulk method is that it can easily be applied using any

spreadsheet program on a personal computer (PC).

3
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Chapter 1

The First SeaWiFS Ocean Optics DARR

DAVID A. SIEGEL, MARGARET C. O'BRIEN, AND JENS C. SORENSEN

University of California, Santa Barbara, Santa Barbara, California

ABSTRACT

The focus of this intercomparison study is the estimation of the downwelling irradiance spectrum just beneath

the sea surface, Ed(0-, A), the upwelling nadir radiance just beneath the sea surface, Lu(O-, A), and the vertical

profile of the diffuse attenuation coefficient spectrum, Kd(z, A). This study shows that with good data (near-
constant incident irradiance), the different analyses produce estimates of L_,(0-, A) and Ed(0-, A) that are within

3-4% of the aggregate mean value. The statistical uncertainties in determinations of Ed(O-, A) are considerably

larger (approximately 7%) than those for Lu(0-,A) (about 2%), as found using the BBOP analyzed results.

These differences can be attributed to geophysical noise sources in the raw data streams which appear to be

primarily due to the aliasing of surface wave induced glinting in the vertical radiometric profiles. Furthermore,

the profile of the diffuse attenuation coefficient spectrum, Kd(z, A), can be replicated to better than 5% with
the different analyses. These differences account for much of the total 5% uncertainty that is tolerated for

SeaWiFS calibration and validation purposes (Mueller and Austin 1995). For bad data, large deviations among

methods occur. The DARR-94 results do not show a clear winner among data analysis methods evaluated. It is

apparent, however, that some degree of outlier rejection is required in order to accurately estimate L_ (0-, A) or

Ed(0-, A). Possible solutions include manual or automated data disqualification, robust curve fitting routines, or

extrapolation using the incident flux (not fully evaluated in this study). Furthermore, the calculation, evaluation
and exploitation of confidence intervals for the AOP determinations needs to be explored. That is, the SeaWiFS

calibration and validation problem should be recast in statistical terms where the in situ AOP values are

statistical estimates with known confidence intervals. This is critical for the long-term assessment of ocean color

imagery and its calibration and validation using in situ data sets. Last, there is no substitute for good in situ

data for accurately determining AOPs. Good at-sea procedures and clear skies are essential and cannot be over

emphasized.

1.1 INTRODUCTION

Accurate determinations of upper ocean AOPs are es-
sential for the vicarious calibration and validation of the

SeaWiFS instrument,and its derived data products (Mc-

Clain et al. 1992 and Mueller and Austin 1995). To date,

much of the effort in the SeaWiFS CVT has been spent

on the radiometric calibration of at-sea optical instrumen-

tation and on the development of protocols for deploying

them (e.g., Mueller et al. 1994 and Mueller and Austin

1995). These efforts have produced significant and impor-
tant improvements in the SeaWiFS research community's

ability to provide accurate AOP estimates for SeaWiFS

calibration and validation, as well as algorithm develop-

ment requirements. The correct deployment of accurate

spectroradiometric instrumentation, however, is only tile

first step in making accurate determinations of AOPs.

In order to calculate AOPs using a vertically profil-

ing st)ectroradiometer, a number of critical a_sumptions

must be made concerning how the data is handled. For
example, to determine the water-leaving radiance from a

near-surface profile of upwelled spectral radiance, L,,(z, A),

one must numerically extrapolate the profile from depth

to just beneath the sea surface (where z=0-). Difficul-

ties arise due to superposition of the time course signals
from surface gravity waves and random variations in pack-

age orientation, as well as ship shadows, upon the time

mean upwelled radiance profile. These factors can lead

to noise in spectroradiometry data. Hence, least-squares

estimation methods are generally used to objectively ex-
trapolate L_,(z, A) determinations to the sea surface to es-

timate L_(0-, A), the upwelling radiance spectrum just be-

neath the sea surface. This procedure has been applied by

man), investigators (e.g., Smith and Baker 1984, Smith and

Baker 1986, Siegel and Dickey 1987, Sorensen et al. 1994,

and Siegel et al. 1995a) and is recommended by the Sea-

WiFS Ocean Optics Protocols (Mueller and Austin 1995).
However, a variety of procedural questions remain which
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mayimpactthederivedvalueof L_(0-, A):

1. Are L_(z, A) data vertically smoothed before ex-

trapolation to the sea surface?

2. Is the data binned vertically before calculating

L_(0-,A)?

3. How are ship shadows excluded?

4. How is a surface sensor used if one is available?

5. What effect(s) do these decisions have on an es-

timate of L_(0-, A)?

6. How about other important AOPs?

To evaluate the role that data analysis methods have

upon values of derived AOPs, the DARR-94 workshop was

sponsored by the SeaWiFS Project Office during July 21-
23, 1994 at ICESS (UCSB). Four research groups used

their standard spectroradiometer data analysis routines

(Table 1) on an identical data set of 10 spectroradiome-

try casts. The goal of DARR-94 was to assess the degree

to which data analysis methods affect AOP estimation and

to make general recommendations where applicable. This

assessment is critical as fully processed spectroradiometry
data will be used to calibrate and validate the SeaWiFS

satellite data stream. Hence, the direct comparisons of

the results of the four data analysis methods will put some

bounds on the degree of certainty for AOP estimates and

their effects upon the calibration and validation of the up-

coming SeaWiFS ocean color mission.

Table 1. A listing of data contributors for DARR-94

along with their methods and primary study sites.

Contact Method Primary Site

D. Siegel

J. Mueller

C. Davis

G. Mitchell

Differentialt

Integral

Differential:_

Bulk

JGOFS BATS

TOGA COARE

Gulf of Mexico

Gulf of California

JGOFS EqPac
Arabian Sea

CalCoFI

With confidence intervals and quality flags.

With sea surface and surface irradiance adjustments.

This study evaluates and documents the magnitude of

uncertainty in derived estimates of ocean color relevant

AOPs due to differences in data analysis methods. In

particular, estimates of the spectrum of upwelling radi-

ance and downwelling irradiance just beneath the sea sur-

face, Lt,(0-, A) and Ed(0-, A), respectively, and the verti-

cal profile of the diffuse attenuation coefficient spectrum,

Kd(Z, A), are considered in detail. The approach taken for

the DARR-94 is rather simple. Each of the four research

groups (Table 1) provided up to three spectroradiome-
try casts (discussed below) and each group analyzes the

data to relevant AOPs. The resulting values of L_(0 , A)

and Ed(O-,A) and vertical profiles of Kd(z, A) are com-

pared and relevant conclusions presented. All raw data

and analyzed products are available using the anonymous

file transfer protocol (ftp):

ftp. icess, ucsb. edu

cd pub/bbop/DARR-94/dat a

or from the SeaWiFS Project Officedata system (Hooker

et al.1994).

Sincethe scope ofthisfirstdata analysisintercompar-

ison study (DARR-94) has been purposely limited, the

present resultswillobviously have severalinherent limi-

tations:

1. The methods are compared for a limited amount of

data (9 casts) over a small range of environmental
conditions. These data are for the mostly Case-

1 waters (Table 2) and will not cover all possible
observational scenarios.

2. It is not known which method (if any) is providing

the right answer as these are field data sets. Clearly,

if all four methods coincide, the differences amongst

the methods applied can be assumed unimportant;

however if their results diverge, it remains unclear

which method is right and which is wrong.

3. A variety of correction procedures, which may be

important for accurately determining AOPs, were
not evaluated. These include corrections for Ra-

man emissions, instrument self-shading, gimballing

(or not) of surface irradiance sensors, tilt correc-

tions for underwater spectroradiometer signals, and

propagating the L_(0-,A) and Ed(0-,A) through

the air-sea interface. All of these corrections may

be important although they are not assessed here
in an effort to simplify the goals of the DARR. It is

likely that these corrections will be examined, along
with a more extensive data set, in future DARR

workshops. The use of synthetic data sets may also

prove to be useful.

It should be stressed that the goal of the DARR-94

workshop was not to codify a single recipe by which data

must be processed for SeaWiFS calibration and validation

needs. This recipe is unknown and there are many factors,

involving instrumentation, data acquisition, at-sea deploy-

ment procedures, and the analysis goals of the investiga-
tion, which make it difficult to provide a simple recipe for

all investigators and all applications. That task is clearly

beyond a three-day workshop. Nonetheless, an attempt

is made to make generalities concerning what should and

should not be done in analyzing spectroradiometry profiles.

Furthermore, the conclusion is reached that the determina-
tion of AOPs should be cast as a stochastic problem where

statistical estimates are made with assessible confidence

limits. This approach is critical for achieving SeaWiFS

calibration and validation goals.

5
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1.2 DATA ANALYSIS METHODS

The present objective is to assess the differences among
four different data analysis methodologies when applied

to identical spectroradiometry data. All of the methods

are presently used in the field and will be utilized by the

CVT (McClain et al. 1992). Complete descriptions for each
data analysis method are presented in subsequent chap-

ters. Here, only a brief introduction of each method is

presented. It should be mentioned that code (both source

and executable) for most of the data analysis methods are

available via anonymous ftp (see the authors of the indi-

vidual chapters involved).
The four methods have been developed with very differ-

ent design objectives which are primarily specified by the

science goals and logistical limitations of each group's at-

sea sampling programs (Table 1). For example, the method

employed by the BBOP (Chapter 2) has been designed to

deal with large volumes of data (as many as 70 casts from a

single day and over 2,000 casts a year). The design philoso-

phy is that bad data are flagged and discarded rather than
corrected. On the other hand, investigators at CHORS

have developed an integral method for determining AOPs

with the ability to hand select spurious data points. This

design goal is predicated by inherent wire-time limitations

due to large multidisciplinary cruises in which the CHORS

group participates. These design goals reflect the at-sea

sampling opportunities available to each group. The data
analysis methods are each group's solution to these prob-

lems while optimizing their science objectives.

The BBOP group has developed a data analysis method

with the data analysis philosophy that they will take more

casts tha_l they need (Chapter 2, Sorensen et al. 1994,

Siegel et al. 1995a, and Siegel et al. 1995b). This means

suspect data will be eliminated from future consideration
rather than corrected. Thus, the BBOP data processing

system produces quality flags and is able to routinely han-
dle large volumes of data, which requires that nearly all

of the processing steps be completed with little human in-

tervention. The suspect data condition is determined by
evaluating a variety of predetermined quality flags (stabil-

ity of incident irradiance levels, tilt and roll limitations,

etc.) as well as the calculation of statistical confidence
limits for most derived products. Relevant to the present

intereomparison study, the BBOP data processing system

estimates the values of L_(0-, )_) and Ed(O-, ;_) by fitting

a straight line to the upper 20 meters of a profile (10m

for A > 600nm). The vertical profile of Kd(z,)_) is deter-

mined using a differential method where least-square fits
are applied over 10 m vertical intervals. Robust curve fit-

ting algorithms are used to reduce the effects of spurious

data points or outliers (Press et al. 1992); also, confidence

intervals for estimates of Lu(0-, _) and Ed(O-,._) are de-

termined. The BBOP processing system runs on UNIX

workstation computers and requires a GNU C++ compiler

and a GUI package, such as Matlab or Interactive Data

Language (IDL). For more information concerning acquir-

ing the BBOP system see Chapter 2 or Siegel et al. (1995b).

The CHORS group has taken a very different approach

and has developed an integral method for determining the

slope of the log-transformed irradiance profile, Kd(z, )_),

and its intercepts, L_(0-,A) and Ed(0-,A) (Chapter 3).

Their analysis goals are driven by the fact that they must

make good estimates of AOPs from every cast in order to

meet their own, as well as their colleagues', scientific ob-

jectives. The CHORS method determines the profile of

Kd(z, A) and values of L_,(0-, A) and Ed(O-, A) simulta-
neously using an integral method by fitting the radiation

profile using low-order polynomials between user-selected

node locations. The node locations may be determined ini-

tially by examining a companion chlorophyll fluorescence

profile, or if one is not present, by examination of curvature

in the radiometric profile. The number and depths of nodes

are then iteratively adjusted to minimize systematic depar-

tures between the modeled and measured profile curves.

Values of Kd(z, )_) are determined analytically from the

fitted polynomials. The CHORS method utilizes human-

selected data rejection and node setting, and is developed
with a sophisticated GUI. It should be noted that the de-

termination of the Lu(0-, ,k) and Ed(O-, )_) values strongly
affect the fit to the entire profile. The CHORS method

presently runs on Silicon Graphics Inc. (SGI) workstations

under IRIX 4.0 and higher.

The NRL method (Chapter 4) has been developed with

the same analysis goal as the CHORS method; namely, the

need to make accurate determinations of AOPs from every

cast during a cruise to achieve the science goals. NRL has

employed a multiple level, prediction-correction procedure

for estimating AOPs. The first level utilizes a differen-
tial approach to make first order estimates of AOPs and is

fully automated. The second level employs a series of cor-

rection procedures and modeling to affect a robust surface

normalization evaluating the z = 0- and z = 0+ difference

in an interactive mode through a sophisticated GUI. This
surface normalization is done in order to eliminate the ef-

fects of changing solar illumination due to clouds, as well

as a correction procedure for the potential effects of ship

shadowing and hull reflection. The second level method

is not used for the DARR-94 comparisons as many of the

data sets used were missing required data types. The NRL

method works oil UNIX workstations using the IDL soft-

ware package.

The SIO group has employed a bulk method for de-

riving AOPs from spectroradiometry profiles (Chapter 5).

The bulk approach has been long employed in the past and

much of what is known about AOPs has come from using

this approach (e.g., Strickland 1958, Tyler and Smith 1970,

Smith and Baker 1978a and 1978b, and Morel 1988). The

bulk method has been used in the past by the SIO group

(e.g., Mitchell and Holm-Hansen 1991), although, they are

not doing so presently. The bulk approach fits a straight
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Table 2. GeolocationandskyconditionsfordatafilescomparedinDARR-94.
Group File Priority Location Station Longitude Latitude Sky

BBOP

CHORS

NRL

SIO

a010992b.dn

aO61792f.dn

aO82092c.dn

04111945.dn

04111700.dn

04141407.dn

e920328a.dn

e921016a.dn

c0403d.up

c0411g.up

Sargasso BATS

Sargasso BATS

Sargasso BATS

GOMEX 611

GOMEX 510

GOMEX 1625

EqPac 5

EqPac 5

CalCoFI
CalCoFI

64°44.20W 31°23.61N

64 18.24 31 30.40

64 7.84 31 50.99

89 59.88 28 30.12

90 0.00 28 45.12

89 27.48 28 30.48

139 57.90 0 1.80

140 2.09 0 1.69

122 40.40 31 5.30
121 10.30 34 7.30

Haze

8/8 Stratus

2/8 Cumulus
Clear

Clear

Patchy Clouds

Overcast

Clear

Table 3. Temporal and in-water parameters for files compared in DARR-94. The maximum depth of the profile
is given by Zma× and the mixed layer depth by Zmld.

Group File

BBOP a010992b.dn

a061792f.dn

a082092c.dn

CHORS 04111945.dn

NRL

SIO

04111700.dn

04141407.dn

e920328a.dn

e921016a.dn

c0403d.up

c0411g.up

Priority

1

1

1

2

2

1

1

1

1

2

Date Local Time

9 Jan 92 1600

17 Jun 92 1000

20 Aug 92 1100

11Apr 93 1345

11 Apt 93 1100

14 Apr 93 0800

16 Oct 92 1000

28Mar 92 1000

3 Apt 93 0928

11 Apt 93 1325

Zmax Zmld

200m 100m

200 20

200 30

8O

30

2OO

180 90

200 70

200 60

200 10

Notes

Late afternoon (sunset).

Clear overhead.

Surface and bottom nephels.

Dark at 22m (K _ 1.4m-1).

Deep water, clouds.

Variable overcast.

Ship shadow?

Ship shadow, no surface.
Good data to 30 m.

line to the log-transformed irradiance and radiance pro-
files within the oceanic mixed layer. The fluxes just below

the sea surface are estimated from the exponentiated in-

tercept and the slope gives a mixed layer averaged diffuse

attenuation coefficient, Kd(Zo, A). Obviously, only a single

estimate of Kd(Zo,A) is provided by this method; hence,
it cannot be used to determine the depth dependence of

Kd(z, A). The bulk method is included in the DARR-94 as
an experimental control providing a single analysis from

which one can interpret differences among the other meth-
ods. One distinct advantage of the bulk method is that it

can easily be applied using any spreadsheet program on a
PC.

There are significant differences among the four data

analysis methods due to differing scientific objectives and

at-sea logistics of the individual research groups. For the
most part, differences among the data analysis methods

are due to the way each group collects data at sea. The

sampling philosophy for BBOP is based upon the under-

standing that not every cast will produce good AOPs. The
CHORS and NRL groups must be able to interact with

other researchers on synoptic survey cruises and, hence,

must determine AOPs for every daytime cast made. Thus,

the CHORS and NRL groups have developed extensive sur-
face normalization and correction procedures. The BBOP

method assumes bad data can never be made into good

data and, therefore, rejects AOP determinations based

upon quality flags and the size of confidence intervals. The

bulk method (SIO) completes the methods evaluated and

is presented in a historical context from which an evalua-

tion of the degree of improvement made by the other more

sophisticated data analysis methods can be made.

1.3 DATA AND RESULTS

1.3.1 The DARR-94 Data Set

A summary of the spectroradiometry data files and
basic environmental conditions for these files used in the

DARR-94 is shown in Tables 2 and 3. The files are la-

beled with a priority number of I or 2 based upon whether

these profiles provide adequate light data deep in the sam-

pled water column. In some sense, priority 1 casts corre-

spond to open ocean conditions in that the good data are

found throughout the vertical profile and no anomalous

features are observed, i.e., extremely high Kd(Z, A) values,

nepheloid layers, etc. Using this criteria, there are seven

priority 1 profiles from which comparisons of data analy-
sis methods are made. The priority 2 data appear to be

mostly Case-2 water casts; hence, the primary comparisons

made using the DARR-94 data set will be valid primarily
for open ocean conditions using the priority 1 data set.
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Unprocessedverticalprofilesof Ed(Z, 488), Lu(z, 488),

Ed(0 +, 488),temperature, and in situ chlorophyll fluores-
cence used in DARR-94 are shown in Figs. 1-10. Note

that not all of parameters are sampled for each cast. In

particular, there are no temperature or chlorophyll fluo-

rescence data for the CHORS casts (CHORS 04111945,
04111700, and 04141407) nor are there surface radiation

measurements made with the SIO data set (c0403d and

c0411g; the CHORS analysis was applied assuming the in-

cident irradiance was constant). It must be stressed that

the data provided here are not the best data collected by
the contributing research group, but rather the data rep-

resent typical data collected from the field. Indeed, some

casts were selected to demonstrate how data analysis meth-

ods deal with bad data. Obviously, bad casts are not useful

for making AOP determinations for SeaWiFS calibration
and validation purposes.

It is apparent that there is a wide range of profile shapes

in the aggregate DARR-94 data set. Water columns with

deep chlorophyll maxima are found (BBOP a061792f and

a082092c, NRL e921016a, and SIO c0403d) where the
depth of chlorophyll fluorescence maximum varies from ap-

proximately 50m (NRL e921016a) to more than 125m

(BBOP a082092c). Casts with high chlorophyll values in
the near surface layer are also found (BBOP a010992b,

NRL e920328a, and SIO c0411g). It is obviously diffi-
cult to make this determination from the CHORS data as

there are no chlorophyll fluorescence data. Also, mixed
layer depths of the DARR-94 data files vary from 10 to

more than 100m (Table 3). For the most part, the pro-
files are taken under excellent incident illumination condi-

tions. The obvious exceptions are the low light conditions
of BBOP a010992b, which was taken at sunset, and the ex-

treme incident irradiance variability found in the CHORS

04141407 cast. Again, these distinctions cannot be made

using the SIO casts, since incident irradiance is not in-

cluded in the data; hence, a wide range of conditions are

represented by the DARR-94 data set, although they are
by no means inclusive.

The upper 30 m of the downwelling irradiance, Ed(z, A),

and upwelling radiance, Lu(z, A) profiles are of particular
relevance for assessing AOPs for SeaWiFS calibration and

validation purposes (Figs. 1-10). Within this depth re-

gion, the intercept values, Lu(0-, A) and Ea(O-, A), are de-

termined using a statistical method (such as least-squares

estimation). If stable values of L_ (0-, A) and Ed (0-, A) are

to be retrieved, the log-transformed Ed(z, A) and Lu(z, A)
profiles must be found along a straight line. The raw

Ed(z, A) and Lu(z, A) profiles show a significant degree of

variation off this assumed straight line (Figs. 1-10). Fur-

thermore, the variance about a straight line appears to
increase as the sea surface is approached and is greater for

Ed(z, A) than for Lu(z, A). There are a variety of causes

for these variations, including, ship shadow and hull re-

flection, surface gravity wave-induced glint and focusing,
random tilting of the profiling spectroradiometer off zenith,

as well as cloud-induced fluctuations of the incident irra-

diance (which may affect a profile of light at any depth).

Large near-surface radiation variations in radiometric

profiles may also result from strong, vertically stratified

region of increased attenuation by particles and dissolved
materials in the water column. In the CHORS 04111945

cast, for example, both the Ed(z, A) and Lu(z, A) profiles

show a strongly nonlinear decrease with depth over the

top 5 m. This profile was taken near the Mississippi River

outflow, and the highly turbid surface lay responsible for

large values of Kd(z, A) for both Ed(Z, A) and L,,(z, A) are

of Mississippi River origin. However for most of the other

casts, the high degree of near-surface Ed(z, ,k) and Lu(z, )_)

variations is not due to changes in optical water masses,
but rather to random sources of irradiance noise within the

profile. Ship-induced sources of noise (i.e., ship shadows)

are apparent in some of the profiles (cf., NRL e921016a

and SIO c0403d). Note that for the BBOP data, the ship

shadow signal has been shown to be smaller than other

inherent sources of noise in the estimation of AOPs (Weir
et al. 1994).

1.3.2 Near-Surface Data Comparisons

Central to the agreed upon goals of DARR-94 was the

comparison of estimates of the downwelling irradiance and

the upwelling radiance spectra just beneath the sea surface

(z = 0-), Ed(O-, _) and Lu(0-, A) respectively. Estimates

of Ed(O-, A) and L_(0-, A) for the four individual analy-

ses of the priority 1 data set and their aggregate statistics

are presented in Figs. 11-17. A casual examination of the

Ed(O-, A) and Lu(O-, A) estimates illustrates several gen-

eralities concerning the abilities to make accurate determi-

nations of Ed(O , A) and L_,(0-, A) from spectroradiometry
profiles:

1. The variations among the various methods is

greater for Ed(O-, A) than for Lu(O-, A).

2. This difference is accentuated in the red wave-

lengths.

3. The spread among the individual Ed(0-, _) es-

timates is mostly smaller than the size of the

95% confidence interval for the BBOP estimate;

although, at times, there are exceptions (BBOP

a010992b).

4. The simple least-squares methods employed by

the SIO group appears to be the onle one of the

four methods that consistently produces outlier

estimates of Ed(O-,)_) and Lu(0-,A). This is

particularly apparent in the red wavelengths.

5. The spread among the differing Ed(0-, A) and

L_(0-,A) estimates does not appear to be re-

lated to the clarity of the water as inferred by

the estimated color, Lu (0-, _).

8
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Fig. 1. Vertical profiles of the raw data used in the DARR-94 comparison for BBOP a010992b. The four
panels for each vertical distribution are assembled: a) downwelling irradiance at 488 nm and upwelling radiance

at 488nm, Ed(z,488) (in units of mWcm -2 nm -_) and Lu(z,488) (mWcm -_ nm -1 sr-_), respectively; b)

the incident irradiance at 488 nm during the time of the cast, Eu(0 +, 488); c) in situ temperature (°C); and

d) chlorophyll fluorescence (in volts)•
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Fig. 2. Vertical profiles of the raw data used in the DARR-94 comparison for BBOP a061792f. The four

panels for each vertical distribution are assembled: a) downwelling irradiance at 488 nm and upwelling radiance
at 488nm, Ed(Z, 488) (in units of mWcm-2nm -x) and L_(z,488) (mWcm-2nm -x sr-X), respectively; b)

the incident irradiance at 488 nm during the time of the cast, Ed(O +, 488); c) in situ temperature (°C); and

d) chlorophyll fluorescence (in volts).
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Fig. 3. Vertical profiles of the raw data used in the DARR-94 comparison for BBOP a082092c. The four
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d) chlorophyll fluorescence (in volts).
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Fig. 5. Vertical profiles of the raw data used in the DARR-94 comparison for NRL e921016a. The four panels

for each vertical distribution are assembled: a) downwelling irradiance at 488 nm and upwelling radiance at

488 nm, Ea(z, 488) (in units of mW cm-2 nm- x) and Lu (z, 488) (mW cm-2 nm- 1 sr- 1), respectively; b) the

incident irradiance at 488nm during the time of the cast, Ed(O +, 488); c) in situ temperature (°C); and d)

chlorophyll fluorescence (in volts).
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Fig. 9. Vertical profiles of the raw data used in the DARR-94 comparison for CHORS 04111945. The two

panels for each vertical distribution are assembled: a) downwelling irradiance at 486 nm and upwelling radiance

at 486nm, Ed(Z,486) (in units of mWcm-mnm -1) and L_,(z,486) (mWcm-2nm-lsr-1), respectively; b)
the incident irradiance at 487 nm during the time of the cast, Es(0 +, 487).
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A quantitative evaluation of the differing Ed(O-, A) and

Lu(0-, A) estimates may be made by examining the coef-

ficient of variation (c.v.) among the four analyses for each

priority 1 cast. Values of c.v. (in percentages) for the pri-

ority 1 DARR-94 casts are shown in Table 4. Only overlap-
ping wavebands are shown in Table 4 (where Lu(O-, 530) is

substituted for Lu(0-, 520) in the CHORS data). Typical

c.v. values range from about 1-8%. When all of the prior-

ity 1 data are evaluated, mean c.v. values are slightly lower

for Ed(0-, A) estimates than they are for L_(0-, )_). Of the
individual casts, the CHORS data file 04141407 is by far

the worst of the priority 1 casts, especially for L_(0-, A).

This is expected as this cast had extensive cloud-induced

incident irradiance variations (Fig. 10). When this cast is

removed from consideration (the EC values in Table 4),
the DARR-94 mean c.v. values are around 3-4% with no

significant difference between the Lu(O-, .,k) and Eu(0-, A)

estimates; hence, the scatter of the results of the four anal-

yses about the analysis aggregate mean for good casts is
less than 4% of the retrieved value.

The comparison of the relative size of the 95% con-
fidence intervals for the BBOP determined Ed(O-, A) and

L_(0-, A) provides another objective measure of the degree

to AOPs can be accurately determined. Here, the relative

uncertainty in the least-squares estimation of Ea(0-,,k)

and Lu(O-, A) is presented in Table 5 as the ratio of the
confidence interval to the retrieved value. In general, the

relative uncertainty in Lu(0-, A) is much smaller than it is

for Ed(O-, A) (with the obvious exception of the CHORS

04141407 cast). Excluding this one bad cast, the rela-
tive uncertainty is approximately 2% for L_(0-,)_) and

about 7% for Ed(O-,A). Some casts (BBOP a061792f
and a082092c, and SIO c0403d) result in very large val-

ues (greater than or equal to 8%) of relative uncertainty for

Ed(O-, A). This is due to the high degree of variability in

the near-surface Ed(Z, A) profile for these casts (Figs. 2, 3,

and 6). The L_(0-,A) estimates have significantly lower
relative uncertainties for these casts suggesting that the

source of error may be due to surface gravity wave-induced

irradiance fluctuations (see below).
Comparison of the Kd(z,A) estimates are shown in

Figs. 18-26. In general, the comparison looks very good

for most of the casts where normalized root mean square

(rms) deviations among the four analyses are typically less

than 5%. If anything, the normalized rms deviations are

smaller for the higher wavelengths (A > 550 nm), which
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Fig. 11. Estimates of a) the downwelling irradiance just beneath the sea surface, Ed(0 ,A), and b) the

upwelling radiance just beneath the sea surface, L_(0-,A) for CHORS 04141407. In the upper panels, all

four of the individual analyses are shown. The error bars in the upper panels correspond to the 95% confidence
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about the mean for each waveband. Only priority 1 casts are shown. Confidence intervals are not calculated

as the sample size (N = 4) is very small.
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Confidence intervals are not calculated as the sample size (N = 4) is very small.
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Confidence intervals are not calculated as the sample size (N = 4) is very small.
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Table 4. Coefficientsof variation(in percentage)amongthe fouranalysesfor estimatesof Ed(0-, A) and

L_(0-, A) from the priority 1 casts. Data are given only where there are overlapping wavebands. Data set mean
and standard deviation EC values in the last two lines exclude the spurious CHORS cast.

Group Cast Ed(0-,441) Ed(O-,490) Ed(0-,520) Lu(0-,441) Lu(0-,490) Lu(0-,520)

BBOP

CHORS

NRL

a010992b

a061792f

a082092c

04141407

e920328a

e921016a

c0403d

7.02 6.20 7.17

4.41 4.02 4.12

3.85 3.47 3.32

4.41 9.41 4.69

0.58 0.80 3.30

2.09 2.63 1.99

1.43 1.59 1.18

8.84 8.91 8.24

2.65 2.33 7.97

3.98 3.83 2.57

19.89 27.52 22.30

2.00 1.59 2.00

1.75 1.78 2.05

2.20 1.54 1.49SIO

Mean 3.40 4.02 3.68 5.90 6.79 6.66

Standard Deviation 2.19 2.95 1.95 6.64 9.51 7.47

EC Mean 3.23 3.12 3.51 3.57 3.33 4.05

EC Standard Deviation 2.35 1.92 2.08 2.70 2.86 3.16

Table 5. Ratio of the BBOP-analyzed 95% confidence estimates for Ed(0-, )_) and Lu(0-, A) to the estimated
value (in percentage) for the priority 1 DARR-94 casts. EC values in the last two lines correspond to statistical
values excluding the CHORS data.

Group Cast Ed(0-,441) Ed(0-,490) Ed(0-,520) L_(0-,441) L_,(0-,490) Lu(0-,520)

BBOP

CHORS

NRL

a010992b

a061792f

a082092c

04141407

e920328a

e921016a

c0403d

2.16 2.11 2.27

8.75 8.97 9.74

16.60 17.40 16.70

16.80 19.70 21.20

5.69 6.11 6.46

0.99 0.99 1.16

8.18 8.28 8.64SIO

Mean 8.45 9.08 9.45 4.29 4.71 5.04

Standard Deviation 6.31 7.14 7.31 6.49 7.48 6.43

EC Mean 7.06 7.31 7.50 1.86 1.90 2.64
EC Standard Deviation 5.62 5.90 5.65 0.86 0.81 1.22

2.16 2.03 2.56

1.52 1.11 0.64

1.62 1.84 3.10

18.90 21.60 19.40

1.43 1.57 1.96

0.98 1.43 3.94

3.42 3.42 3.65

is due to the fact that the values of Kd(z,A) are much

larger for these wavebands. The tracking of the results
of the three depth-varying methods (CHORS, BBOP, and

NRL) is encouraging. Since the CHORS method is an in-

tegral method, its Kg(z, )Q profiles are smoother and for
many of the DARR-94 profiles it seems to do an excel-

lent job. However, it may not reproduce all the real high
wavenumber variations in Kd(z, )Q as the other methods
do.

The largest deviations among the methods occur for

those casts that are affected by cloud-induced variations of
the incident flux (CHORS 04141407), obvious ship shad-

ows (NRL e921016a and SIO c0403d) or what appear to

be surface wave induced variations (BBOP a082092c). In-

dications of the noise sources are apparent via the pat-
tern of the Kd(z, )_) variations with depth. For exam-

ple, the CHORS 04141407 cast has large random-looking
variations in the derived Kd(Z,)_) values for the BBOP

and NRL (differential analyses). The CHORS analyzed

Kd(z, _) profile seems to fall in the middle in the scatter

between the other two noisy Kd(Z, )_) profiles. It should

be mentioned that this particular cast has an extensive
amount of incident irradiance noise and is flagged as unac-

ceptable by the BBOP analysis. The NRL e921016a data

shows a single wiggle in the Kd(Z, )_) profile at about 30 m
which is likely due to a ship shadow since there are little
significant short-time scale variations in the incident flux

during this profile (Fig. 5). The BBOP cast with large

rms deviations among analyses (BBOP a082092c) seems
to show a regular pattern with depth.

The bulk method for Kd(z, )_) (SIO) provides only a
single point, which is representative of the mixed layer.

In general, its retrieved value is consistent with the more

sophisticated analyses and there are no apparent biases in

the bulk methods Kd(Zo,)_) value and the results of the
other analyses. It is obvious that the bulk method cannot

produce data appropriate for assessing the vertical profile
of Kd(z, )_).
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1.4 DISCUSSION

The possible cause of deviation among the differing

Lu(O-,)_), Ed(O-,A) and Kd(Z,)_) estimates can be bet-

ter understood by considering how a profiling spectrora-

diometer samples a time-varying sea and how values of

Lu(O-,)_) and Ed(O-,)_) are determined. Specifically, a

profiling spectroradiometer samples both in time and depth

as it is lowered through the water column. If there are

sources of in situ radiation variability with time scales at,

or less than, the time required to sample the upper 20 or so

meters of the water column, these variations will be super-

imposed upon the time-mean signal whose properties are

being assessed. The different analysis methods presented
here all smooth the data in different manners and evaluate

Ed(O-, _) and Lu(0-, )_) over different portions of the ver-

tical profile and, therefore, will be evaluated over differing

sampling times. This results in different values of retrieved
AOPs as has been shown.

Cloud-induced variations of the incident flux are an ob-

vious source of noise in an irradiance profile, e.g., CHORS

04141407. Fortunately, the presence or absence of cloud

variations can be evaluated by simultaneously sampling the

incident downwelling irradiance. Although time variations

at depth may not exactly correspond with incident ones,

the presence or absence of incident flux variations provides

a measure of whether cloud-induced variations are impor-

tant (see Figs. 1-10). With the exception of the CHORS

04141407 cast, the priority 1 data set appears to be nearly

flee from this source of noise variability. The effect of inci-

dent flux variations upon the Kd(z, )_) estimates is obvious,

even when attempts are made to normalize the underwa-

ter with the surface fluxes (the CHORS analysis of the

CHORS 04141407 cast in Fig. 22).

A major source of Ed(z, )_) variability near the sea sur-

face is caused by surface gravity waves (e.g., Dera and Gor-

don 1968, Snyder and Dera 1970, Siegel and Dickey 1988,

and Stramski et al. 1992). The tilting of the sea surface due

to surface gravity wave motions results in quasi-random
fluctuations in the in situ irradiance with time scales on

the order of the wave period (cf., Gordon et al. 1971 and

Siegel and Dickey 1988). An estimate of the effects of sur-

face gravity waves upon a vertical profile of downwelling

irradiance can be made by assuming a dominant swell pe-

riod of 8 seconds and a package lowering rate of 0.5ms -1.

In this example, the surface swell would produce a fluc-

tuating component of irradiance with a vertical scale of

approximately 4 m. This signal must be eliminated if ac-

curate estimates of AOPs are to be made by determining

the AOPs over some large vertical interval (on the order

of 10-20 m). Differences in how this is accomplished will

obviously result in differences in the retrieved AOPs. How-

ever, this fact points to AOP estimation methods which

eliminate (or de-emphasize) the effects of outliers off the

time-mean irradiance profiles, e.g., Press et al. 1992.

The observed differences between the uncertainties in

the Ed(O-,)_) and Lu(0-,)_) estimates can also be recon-
ciled if one considers the underwater radiance distribution

near the sea surface, e.g., Smith 1974 and Voss 1989. Ne-
glecting diffuse light for the moment, the downwelling pho-

tons will be restricted to within a Fresnel cone (within 41 °
of zenith). The area of sea surface sampled by the radiome-

ter increases dramatically with the depth of measurement.

Near the sea surface, the extent of the sea surface inter-

secting the sampling Fresnel cone is small and the effects of
surface wave glint will be very important. As the depth of

sampling is increased, however, the area of sea surface in-

creases to include many glinting facets. This will effectively
average out the effects of the randomly glinting sea surface

elements on the sampled irradiance signal. Hence, the ef-

fects of sea surface gravity waves will be most prominent on
Ed(z, A) profiles near the sea surface which are being used

to estimate values of Ed(O-, A). Profiles of Lu(z, A) will be

smoother with respect to depth since upwelling radiance
is backscattered downwelling light and, hence, has entered

the sea over a considerably larger area than the Fresnel

sampling cone for that depth. Therefore, the surface grav-

ity wave noise will affect Ed(z, A) profiles to a much larger
degree than L_,(z, A). This can be seen qualitatively in the

raw data distributions in Figs. 1-10 or in the relative un-
certainty estimates of Table 5. This argument is similar to

the ship shadow avoidance distance discussion presented

in Mueller and Austin (1995).

Quasi-random variations in the orientation of the spec-
troradiometer package may also be an important factor in

creating noise in Ed(z,A) and Lu(z,A) profiles, particu-
larly near the sea surface. In essence, random tilts can

push the collection of Ed(z, A) into, and out of, the Fres-

nel cone. This affects the Lu(z, A) profile determination to

a much lesser degree because of the more uniform angu-
lar distribution of the upwelling radiance (Smith 1974 and

Voss 1989).

Ship shadows may also be an important factor, which
will give rise to variations in the retrieved AOP values. In

some sense, a ship shadow provides a time-mean pertur-
bation to in situ radiation signals with a depth scale on

the order of 10 m. This again will create differences in sea
surface extrapolated fluxes if the data are handled in dif-

ferent manners. There may also be a differential spectral

response. Unfortunately, this effect cannot be objectively
assessed using the present data set.

The results of the DARR-94 workshop do not point to

one analysis being better than another, but rather give
indications of the inherent uncertainty of AOP estimation

due to geophysical noise sources. The different analyses as-

sess different parts of the profile and thus, different paxts
of the space-time distribution of the in situ radiation sig-

nal. The different methods average, smooth, and perform
curve fits on the raw data profiles in different ways. This

strongly suggests the determination of AOPs [rom spectro-

radiometry profiles should be posed as a statistical prob-
lem. Statistically determined AOP estimates should have
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associatedconfidenceintervals.Thesizeoftheconfidence
intervalsprovidesanobjectivemeasureof thegoodnessof
thederivedAOPestimate.Presently,onlytheBBOPdata
analysis method provides a measure of confidence for the
estimate; although this is certainly not a criticism of the

other analysis methods.
This vision must be carried through in the analysis

and utilization of spectroradiometry profiles. Generally, a

statistical technique is employed to estimate AOP values,
which will naturally provide an uncertainty estimate. This
confidence estimate needs to be determined and used. In

addition, the means to exploit AOP uncertainties in fur-

ther analyses and interpretations needs to be developed.

For example, a data point with a large uncertainty about
its estimated value should have a smaller contribution to

a global regression analysis than an estimate with a small

uncertainty, e.g., Press et al. 1992.
There are obvious extensions of this thinking to objec-

tive mapping of satellite imagery, e.g., Santoreli et al. 1991.
This use of confidence intervals may be most important
when in situ AOP estimates are compared with satellite

imagery, i.e., calibration and validation. When performing
calibration and validation, a retrieved satellite-sensed pixel

value, which has been corrected for the effects of the atmo-

sphere, is compared with the estimated in situ AOP value.

Both values will have a quantifiable degree of uncertainty
associated with them; hence, the calibration and valida-

tion problem should be restated formally as a statistical

one. This uncertainty information is important and must
be considered in future calibration and validation analyses.

Researchers must now work to develop effective means to

use these important pieces of information.

1.5 CONCLUSIONS

The bottom line result of the DARR-94 study is that,

with good data, the spread among different data analysis

methods for determining the upwelling radiance and down-

welling irradiance just beneath the sea surface, Lu(O-, )_)

and Ed(0-,)_), respectively, is about 3-4% of the analy-

ses aggregate mean estimate. The statistical uncertainty
in determinations of Ed(0-, A) are considerably larger (ap-

proximately 7%) than those for L_(0-, A) (approximately

2%), as found using the BBOP results. These differences

can be attributed to geophysical noise sources in the raw
data streams, which appear to be dominated by surface

wave glinting processes. Furthermore, the profile of the
diffuse attenuation coefficient spectrum, Kd(z, )_), can be

replicated to better than 5% with the differing analyses.
These differences account for much of the total 5% uncer-

tainty that is tolerated for SeaWiFS calibration and vali-

dation purposes (Mueller and Austin 1995). For bad casts,

much larger deviations among methods can occur.

The DARR-94 results do not show a clear winner or

loser among the three sophisticated data analysis methods.

Some degree of outlier rejection is required to accurately

estimate Lu(O-,A) or Ed(0-,/_). Whether this happens

automatically (i.e., BBOP) or manually (i.e., CHORS or

NRL) does not seem to matter. The bulk method, how-
ever, is simply not adequate. Possible solutions include

manual or automated data disqualification, robust curve

fitting routines, or extrapolation using the incident flux

(not fully evaluated here). Furthermore, the calculation,

evaluation, and exploitation of confidence intervals for the
AOP determinations need to be explored in more detail.

This is critical for the long-term assessment of ocean color

imagery and its calibration and validation using in situ
data sets.

Critical to the results presented here is the need for

good data. There are no substitutes. Good at-sea pro-

cedures are essential including the sampling of unaliased,

continuous data sets. The SeaWiFS Project has spent a

great deal of effort ensuring that this is the case (Mueller

and Austin 1995) and recommends strongly that these

guidelines be followed.
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Chapter 2

The BBOP Data Processing System

JENS C. SORENSEN, MARGARET C. O'BRIEN, DANIEL A. KONNOFF, AND
DAVID A. SIEGEL

University of California, Santa Barbara, Santa Barbara, California

ABSTRACT

The shear volume of profiling spectroradiometer data is increasing dramatically as global change research pro-
grams are placing more emphasis on the evaluation of spatial and temporal structure of ocean biogeochemical

cycles. For example, BBOP collects over 1,000 profiles each year in order to link time-series observations of

primary production rates to bio-optical parameters. It is likely that these trends will continue as there are

several satellite ocean color sensors that are planned to be deployed between now and the end of the century.

However, these vast amounts of data must be calibrated, processed, reduced, analyzed, and interpreted in a

timely manner. Here, a computer data processing system for efficiently achieving this goal is presented in terms

of both computational and human resources. The processing system is comprised of a suite of ANSI C++ pro-

grams that read and operate on a specified file format, the LCD data file. The LCD file contains all relevant

data and metadata, which include calibration information and at-sea comments, in a single ASCII file. UNIX

shell scripts are used in the control of data flow, as well as error and log handling. The final product is a binned

spectroradiometer data set with relevant derived parameters included [Ka(z,A), Rrs(z,A), Ed(0-, A), etc.] that
may be disseminated to other groups or databases. At UCSB, the BBOP system has been used for the past two
years and the system is available for use by other research groups.

2.1 INTRODUCTION

It is well recognized that ocean optics data sets have

a huge potential for addressing many aspects of ocean

biogeo-chemical cycles (see for example, Dickey and Siegel

1993). To be effectively used in interdisciplinary studies,

such as JGOFS, optical data sets must be made available in

a timely manner. For example, in order to effectively col-

laborate with other investigators in the JGOFS BATS, the

BBOP activity must provide and interpret ocean optical
data sets on the same time scale as the BATS collabora-

tors to work up pigment, primary production and water

chemistry data. In addition, the calibration and valida-

tion needs of the upcoming SeaWiFS ocean color mission

requires processed ocean optics data in near-real time (Mc-

Clain et al. 1992).

A major stumbling block in the dissemination and uti-

lization of bio-optical data sets has been the lack of efficient

and straightforward data processing schema. Bio-optical

Editors' Note: This Chapter has appeared as an article in an
SPIE publication (Sorensen et al. 1994) and is being included
in this volume with permission of the authors and SPIE. Minor
editorial changes have been made to reflect the style of the
Sea WiFS Technical Report Series.

data sets have several characteristics which make their

final products difficult to produce quickly. First, they tend

to be large (several Mbytes each) due to high data sam-

pling rates and a diverse parameter range. Second, many

profiles (tens to thousands) are often made during a single

cruise due to experimental design and the at-sea ease of

making these profiles. Recalculation of measured parame-

ters is another characteristic of profiling spectroradiometer

data sets that is often necessary, as radiometric calibra-

tions are at times uncertain (Mueller and Austin 1995).

Each year, the BBOP sampling collects over 1,000 spec-

troradiometer profiles, and the instrument is recalibrated

at UCSB three times each year. In order to effectively meet

scientific, logistic, and collaboration goals, these data must

be efficiently processed and analyzed.

In anticipation of this large volume of data, as well as

the rapid turn-around requirements imposed by the cali-

bration and validation of satellite data sets, a new data

processing system for large volumes of multispectral pro-
file data has been developed. In what follows, the struc-

ture and data flow of the BBOP data processing system

is introduced. This manuscript is intended as a simplified

overview and not as a detailed users' guide (see Siegel et

al. 1995b for a users' guide).
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2.2 PHILOSOPHY

As with any data processing system, there are sev-

eral conceptual and philosophical positions that need to
be taken based on the scientific goals of the project and

the available resources. In no specific order, the goals of

the BBOP data processing system are to:

• Utilize as much of the existing spectroradiometer

analysis methods as possible,

• Rapidly produce final archival data sets,

• Minimize human intervention steps,

• Maximize the number of data quality assessment
and assurance checks,

• Generate fully self-describing data sets,

• Provide data files in ASCII which are easily read

and edited,

• Make quick-look products easy to obtain at several

stages of the processing,

• Include processing documentation in the data files

at each step,

• Work on many present and future computer plat-

forms, and

• Allow much of the data reduction to be accom-

plished by an experienced undergraduate student.

As a limitation imposed by the number of casts gen-

erated and the imposed rapid turn-around requirements,
each profile cannot be manipulated individually. There-

fore, in order to assure data quality, many efficient qual-

ity assessment and control steps must be implemented.

Known sensor problems must be corrected or flagged. Ex-

amples of known problems include low signal-to-noise ra-

tios (SNRs) in irradiance and radiance channels near the
dark current values, and obvious spiking in data fields due

to acquisition errors. These problems require that the af-
fected data values be replaced with trap flags (-9.9 x 1035)

so that no processing is performed on these spurious fields.

In addition, the quality of the data for some applications

is affected by events occurring during collection, including

excessive package tilts and variations in incident illumina-

tion during a cast due to changes in cloud cover. These

events require that entire data records be qualified. In
these cases, a new field is created containing a flag which

defines the quality of the data based on data values in one

or two fields. Data records containing either trap or qual-

ity flags can be later deleted or accepted by making simple

threshold comparisons.
Provisions also must be made for unknown and unex-

plained sources of error. These may be simple, the com-

plete failure of a channel, or insidious, the slow change in
a calibration constant. To catch these errors, plots must

be made of several important quantities on a regular basis.

These may be spectra of calculated diffuse attenuation co-

efficients, reflection ratios, or simply profiles of processed

conductivity, temperature, and depth (CTD) data. The

BBOP data processing system streamlines the plotting of
important parameters by allowing quick output of selected

variables as simple ASCII files, which are easily read and

manipulated by plotting programs.

The documentation of data processing procedures is of-

ten neglected in many data processing schemes. For exam-

ple, it is essential to trace changes in calibration constants.

Things as simple as the digital filtering method used are

also important characteristics imposed upon a data set.

As part of the BBOP data processing system, processing

documentation is added automatically to the data file so

that every data user knows explicitly what was done to the
data file.

2.3 LCD FILE FORMAT

At the heart of the BBOP processing system is the LCD

file and its structure. The LCD file is self-contained, with

all pertinent header, calibration, and processing history

included. This system is somewhat redundant since much
of the header and calibration data will be identical for all

casts in a cruise; however, the benefits of easy access to

calibration constants and processing history far outweigh

the cost of slightly larger data files. During the first 18

months of the BBOP activity, 20 different calibration files

have been required due to changes in spectroradiometer

calibration, ancillary instruments, and collection software.

Record keeping has been simplified by recording all cali-
bration information within each data file. The LCD file

can be stored in a compressed format to save disk space.

The LCD file is organized into five major sections sep-

arated by keywords in brackets (<...>). The header por-

tion, <cruise info>, contains general cast information

gleaned from several sources. The <sampled_parameters>

and <derived_parameters> sections contain a list of the
contents of the data fields found in the <data> section.

The <sampled_parameters> section also contains the cal-
ibration constants. At the end of the LCD file is the

<filters_used> section which contains a record of all

BBOP programs applied to the file as well as any statis-

tical output generated by the programs. Excerpts of an

LCD file after some processing are shown in Fig. 27.

The LCD file structure is required by all BBOP filters

and scripts. The choice of a conversion program depends
on the software used to collect the data. If the data have

been collected with Biospherical Instrument's M24-PROF

software, the LCD file can be created with the BBOP pro-

gram, mer21cd. The LCD file is created from the card,

binary, and calibration files. The output is an LCD file

containing all the necessary features with an abbreviated

header, which can be augmented later or concurrently by

using the BBOP shell script smklcd (Section 2.4.1). Once

the LCD file is completed, it is ready for processing using
the BBOP filters.
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<cruise_info>

filename al11292f

date 11-12-1992

position 31 17.96 64 18.81

cruise bSO

castid index 1met_time idepth

all1292f.dtl 2.5000000e+01 1.8150000e+01 1.3406400e+00

a111292f.dbl 4.9100000e+02 1.3502500e+02 1.2275800e+02

all1292f.ubl 5.2000000e+02 1.4727500e+02 1.2317100e+02

all1292f.ut1 9.2000000e+02 2.4760000s+02 1.1174000e+00

<sampled_parameters>

led410 O. 4.547500e-02 1.603000e-03

<derived_parameters>

kc-led410

<data>

-9.900000e+35 3.457528e+01 3.790249e+01 4.242258e+01 ...

<filters_used>

bscalc -fr led410 1 20 hmdqa111292f.lcd. 1 bhmdqal11292f.lcd.1

#stats ---> samples = 19 abdev ffi1.663616e-01

int ffi3.457528e+01 slope ffi9.904044e-01

min ffi9.872207e+00 max ffi3.772984e+01

mean = 2.863836e+01 stdDev ffi1.364106e+00 vat = 1.101210e+00

confidence(95) ffi1.381770e+00

bbopkc -fs led410 10 bhmdqal11292f.lcd.1 kbhmdqa111292f.lcd.1

Fig. 27. Example of an LCD file.

2.4 BBOP FILTERS

The BBOP filters are a suite of UNIX programs de-

signed to perform a variety of functions in the processing
of LCD data files:

mer21cd creates the LCD file from the M24-PROF cre-

ated card, binary, and calibration files.

bboprocal recalibrates sampled parameters based on
new scales and offsets.

bbopradq compares data to thresholds and replaces

them with trap flags if they are below the thresh-
old.

bbopangq compares package angle data to a constant
and writes a quality flag.

bbopkq calculates incident irradiance changes over a

depth interval and writes a quality flag.

bbopdespike flags spikes based on thresholds and for-

ward first difference or slope difference, replacing

data with a mean of windowed points.

bbopmovavg smooths data using a moving arithmetic
mean window (boxcar).

bboph2o calculates water properties using UNESCO
FORTRAN routines.

bbopbin breaks the cast into profiles, sorts the profiles

on depth, and averages data over depth intervals

creating new LCD files for each profile.

bscalc extrapolates data to a null depth (z--O-) over
a specified depth window•

bbopkc calculates the diffuse attenuation coefficients.

bboptrans performs transformation operations (log,

sqrt, sin, etc.) on data.

bbopmath performs simple math operations with data

by columns, or by one operand and a scalar.

bbopfutil extracts or removes fields from an LCD file
and writes the result as a new LCD file.

bbopdeflag removes or keeps lines of data based on

flag values and thresholds.

bbopstrip extracts LCD data columns and writes them

to a simple ASCII file.

The filters are designed as stand-alone programs that

can be applied to LCD files directly or embedded in shell

scripts• The BBOP Filters are built using g++ (gcc) version

2.4.0 and are stable on Sun Microsystems (SUN) Sparc,
Digital Equipment Corporation (DEC) Ultrix, and SGI

platforms• The BBOP filters will either replace data val-

ues within the <data> section of the LCD file, add new
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Fig. 28. Schematic cartoon tracing some of the processing steps used in BBOP. The outer shell holds the
shell script(s) which in turn call the BBOP filter(s) within the box. The resulting files are binned, qualified

LCD files for archiving.

data fields, or do both. New data field names are placed in

the <derived_parameters> section and can be operated

on by most of the filters in the same way as those in the

<sampled_parameters> section.
All filters share certain fundamental features:

1. Filters read and operate on an external ASCII LCD

file and create an output file with a name speci-

fied by the user, with the exception of bbopbin,
which creates the output file name using the input

file name.

2. Filters require that LCD files contain all the key-
words described above.

3. Filters append the contents of their command lines
to the <filters_used> section of the output file.

4. Filters will not operate on a field if the same filter

and arguments have been used before, or if the new

field name already exists.

The flow of data processing is controlled using UNIX

shell scripts written in the Bourne and Bash shells. These

scripts can create and extract header information, build

LCD files, and call graphics packages or BBOP filters. The

scripts are used. to point to the appropriate directories,

automate processing, check for errors in execution, and

update log files. Figure 28 illustrates the overall structure
of the BBOP processing system. The scripts currently used
are as follows:

smklcd creates the LCD file from the card, binary and

calibration files, and cruise notes.

szcorr recalculates the pressure channel using a new
cruise offset.

stranscorr recalculates the transmissometer channel

using the new cruise air calibration and dark offset.

sbt determines tops and bottoms of profiles using an

interactive Matlab script and inserts the castid ta-
ble into the LCD header section.

srakq qualifies data based on dark value thresholds,
instrument tilt, and constant surface illumination

intensity.

sdespike despikes conductivity, temperature, fluorom-

eter, and transmissometer data twice (two passes).

smovavg smoothes despiked conductivity, temperature,

fluorometer, and transmissometer channels.

sh2o calculates salinity, o, 0_, potential temperature,
and 0o.
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sbin breaksacastintoprofiles,andsortsandaverages
thedatainto1m bins.

sbsc extrapolates below surface irradiance and radi-
ance to a null depth over a predefined window using

the robust algorithm.

skc calculates attenuation coefficients over a 10 m mov-

ing window.

smath calculates irradiance and radiance products and
ratios.

sdeflag removes data lines containing trap flags.

sloop is a simple looping program for passing file names
to other scripts.

scrods automates the entire BBOP processing system

(see example below).

The scripts calling individual BBOP filters can be run

singly, or more commonly, are combined in a global script

(scrods). By combining the scripts and utilizing the UNIX

environment, the entire data processing system can be au-
tomated. Figure 29 shows an example of the global script

scrods, processing a recalibrated LCD file through comple-
tion.

#!/local/gnu/bin/bash

lcd_file='basename $i'

logfile=$PWD/log/${Icd_file}.log

{
echo -n "$1cd_file : "; date

srakq $1&&\

sdespike q${lcd_file}&&rm q${icd_file}&&\

sfmovavg dq${icd_file}_&rm dq${icd_file}&&\

sh2o mdq${lcd_file}&&rm mdq${lcd_file}&&\

sbin hmdq${Icd_file}&&\

{ for filename in 'ls hmdq${lcd_file}.*'

do

sbsc Sfilename&&\

skc b${filename}&&rm bhmdq${icd_file}.,&&\

smath kb$_filename}

done }
date

} 2>_I I tee -a $1ogfile

Fig. 29. An example of the global script scmds.

The _t_ construct allows the following command to be

executed only if the command preceding it is successful (re-
turns a zero exit value). This insures that if one step falls,

the running of the script on a particular file will stop. The

standard output of each script is sent to a log file for each

LCD. Each script called in scrods prefixes a unique letter to

the input file name. For example, hmdqa010193, lcd indi-
cates that the scripts srakq, sdespike, smovavg, and sh2o

have been run on the LCD file a010193.1cd. In scrods,

most intermediate LCD files are removed with the excep-

tion of the files that precede and follow bbopbin, which
are later arehived. Files are available for quick looks at

any step within the processing sequence.

2.5 DATA PROCESSING STEPS

2.5.1 Bottom-to-Top Indexing

Because the LCD file must be eventually split into in-

dividual profiles, each cast is examined to determine the

tops and bottoms of down- and up-casts. Initially, an au-

tomated method for marking these points was pursued,

but the great variety in the shape of the time versus depth

curve made this determination prohibitively complicated.

It was decided that the time versus depth curve must be

evaluated manually for each cast. There are any num-

ber of ways this could be done. Matlab, a commercial
software package, was chosen as a GUI to allow a trained

user to interactively select these points. A table comprised

of a header line and corresponding indices and depths is
inserted into the <cruise_info> section of the LCD file

(see the example LCD file). These indices and depths are

points marking the tops and bottoms of the profiles within
the cast. Once these data are inserted, the first line of the

table (beginning castid) functions as a list of keywords.
The data within this table are used by bbopkq in anticipa-

tion of the binning process and then by bbopbin.

2.5.2 Recalculation

Recalculation may be needed due to changes in instru-
ment calibration constants, at-sea atmospheric pressure

offsets, or transmissometer offsets. The bboprecal filter

converts data from engineering units to voltages using scale

and offset values from the <sampled_parameters> section

and converts back to engineering units using the scale and
offset values from the command line. The new scale and

offset constants are inserted following the variable name

in the <sampled_parameters> section maintaining a cali-
bration history within the LCD file. Recalibration is not

implemented for Sea-Bird (CTD) sampled parameters or
derived fields.

2.5.3 Data Qualification

Because the BBOP data processing approach minimizes

human intervention, the number of data quality assessment

and assurance checks that are made as part of the BBOP

data processing is maximized. The first data qualification
uses bbopradq to assess the ambient light levels for each

channel. When ambient light levels fall below a prede-

fined level, the individual data fields are replaced by a trap

flag (-9.9 × 1035). At all later stages of BBOP process-

ing, flagged fields are not operated upon. Lines containing

these flags can be later deleted using bbopdeflag or in an
application program.

The bbopangq filter qualifies lines of data based on the

orientation of the radiometer in the water, since spectral

data may be compromised by excessive tilting of the instru-

ment. This filter creates a new field containing a quality

flag rather than replacing data in a field.
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Fig. 30. Incident downwelling irradiance (solid) and Kd quality (KQ) flags produced by bbopkq. Regions of
non-zero KQ flags (shaded) indicate periods where the calculation of Kd(z,)_) may be uncertain due to variable
incident irradiance. Lines of data can be later deleted or accepted using bbopdeflag and user specified flag

thresholds.

Accuracy of the diffuse attenuation coefficient calcula-
tion is strongly dependent on a constant intensity of inci-

dent radiation during the calculation time interval. The

bbopkq filter is used to identify the segments of the cast
over which surface illumination is steady enough for the

diffuse attenuation coefficient to be accurately determined.

The bbopkq filter uses the castid table information to
perform its qualification in anticipation of the binning and
calculation of attenuation coefficients (see bbopkc in Sec-

tion 2.5.8). The bbopkq routine calculates the standard
deviation and the mean of the first difference for the group

of points centered at each data line within the user-selected
depth interval (in meters) over which the attenuation coef-
ficients will be calculated. The user also specifies a thresh-
old values for the standard deviation and maximum first

difference with which bbopkq compares its calculated val-

ues and writes a quality flag into a new field dependent
upon the results of the comparison. Later, these flag values
can be used to assess the quality of the calculated diffuse

attenuation coefficients (Fig. 30).

2.5.4 Despiking and Smoothing

Two types of digital low-pass filters are used to reduce

spurious data values (spikes) within the BBOP data pro-
cessing system. The first filter (bbopdespike) uses two

criteria, either together or individually, to flag potential

data spikes. Flagged values are either replaced with arith-
metic means over a user defined window or trap flags if no

valid (non-flagged) data exists within that window. The

criteria are based upon either a forward first difference or

a forward slope difference compared to specified thresh-

old values. The second filter, bbopmovavg, uses a moving

arithmetic mean (boxcar) with the window size defined by
the user. Despiking and smoothing are carried out on tem-

perature, conductivity, transmissometer, and fluorometer

fields only. Both the despiking and moving average filters

create new fields, leaving the input field untouched.

2.5.5 CTD Calculations

The bboph2o routine calculates water characteristics

using the standard UNESCO FORTRAN subroutines and
writes the calculated parameter as a new field in the LCD

file. The bboph2o routine must have despiked temperature

and conductivity data to produce a smooth salinity pro-
file. Time constant differences between the conductivity

and temperature sensors are accounted for using a single-

pole digital filter. The following parameters are calculated:

salinity, in situ density, ae, potential temperature, ao, and

coefficients of thermal and saline expansion.
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2.5.6 Binning

A cast may contain from one to several up or down pro-
files (yo-yos) and hence, may not be monotone in depth.

The binning filter, bbopbin, uses the information from

the castid table to break up the LCD file into individ-

ual daughter profiles that are sorted based on pressure

and compacted using arithmetic averages over a pressure

interval (bin=t=Ap). The resulting pressure field for each

binned profile is also binned to evaluate the true depth of

each binned data record. Each daughter LCD file retains

the complete header and processing history of the original

LCD file and contains two new <derived_parameters>

fields named bin m, where m is the interval chosen by the

user, and bin_pts, containing the number of raw band-

width data records that have been averaged into that bin.

If the file is missing pressure interval data near the sur-

face, bbopbin fills in the lines for the missing bins with

trap flags such that the binned LCD file begins at its low-
est bin interval (i.e., 1.0) and increases monotonically.

2.5.7 Null Depth Extrapolations

The determination of optical fluxes just beneath the sea

surface, or at null depth, are of obvious relevance for ocean

color remote sensing (Dickey and Siegel 1993 and McClain

et al. 1993). The direct determination of null depth op-

tical signals is particularly difficult due to high levels of

surface wave glint noise and uncertain water depth deter-

minations. In order to provide accurate data at a null

depth for the irradiance and radiance channels, profiling

data sets must extrapolate their signals to the sea surface.
The BBOP filter bscalc employs an algorithm which sta-

tistically extrapolates a depth profile to the surface over a

user-specified depth interval. The bscalc filter allows the

user to specify both the upper and lower bounds in the

extrapolation interval, and the log-transformed fields are

extrapolated to the sea surface using the Beer-Lambert re-

lation (Smith and Baker 1986 and Siegel and Dickey 1987).

Two extrapolation algorithms are currently available, the
standard chi-square (X 2) algorithm and a robust algorithm

which eliminates points greater than two standard devia-

tions (2a) from the mean (Press et al. 1992). The bscalc

filter does not make any derived fields, but rather creates

a new line of data at the top of the <data> section with

0 in the bin_m field and trap flags in any field for which
the extrapolation was not calculated. Statistics for the ex-

trapolation fits are included following the command line in

the <filtersused> section (see the example LCD file).

window. This procedure is similar to that employed by

Smith and Baker (1984) and Siegel and Dickey (1987).

The user specifies the channel, algorithm, and depth win-

dow over which to perform the regressions using either
standard X 2 or robust algorithms (Press et al. 1992). It
was decided not to normalize the underwater irradiance
fields to simultaneous above-water irradiance data for the

Kd(z,A) calculations. The approach is to select profiles

that are free from perturbations and to create composites

of profiles based on bbopkq KQ flags. It is unclear whether

the normalization would be relevant in a quickly changing

irradiance field due to the passing of small convective cloud

elements. Furthermore, it is uncertain whether a surface

irradiance normalization routine will mask any variations
associated with the incident radiance distribution. The

depth window used with bbopkc should be the same as

was used for bbopkq.

2.5.9 Simple Math and Transformations

A variety of utility BBOP filters are also available. For

example, bbopmath performs simple math operations on

LCD data fields (add, subtract, multiply, ratio), and adds

a new field to the data section. The bboptrans filter per-

forms simple math transformations (log, exp, sin, asin,
sqrt, etc.) on the data and adds a new field to the data

section. Both these tools are used in the final stages of pro-
cessing to produce spectral ratios and reflectance ratios, as
well as to calculate the beam attenuation coefficients for

the transmissometry field.

2.6 CONCLUSIONS

The BBOP data processing system meets the data pro-

cessing goals. By making this system available to the com-

munity, other investigators will hopefully benefit from the
investments made at UCSB and will contribute incremen-

tal improvements to the existing system. It is intended

that investigators will customize or rewrite the filters and

scripts to suit their own needs and systems, as well as

contribute suggestions for improvement. This processing

system and source code are available to anyone via anony-

mous ftp from ftp.icess.ucsb.edu (/pub/bbop/soft).

The BBOP data processing system, however, is not in-

tended as a softwareproduct, but the usual freesoftware

licensingcaveatsapply.
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Chapter 3

Integral Method for Analyzing Irradiance and
Radiance Attenuation Profiles

JAMES L. MUELLER

San Diego State University, San Diego, California

ABSTRACT

A method is presented for determining the profile of attenuation coefficient (K) for a vertical profile of irradiance

or radiance through a least-squares fit to the optical depth profile, expressed as the integral of K from the surface

to each depth z. The measured optical depth at each z is calculated as the natural logarithm of the surface-to-

depth ratio of measured irradiances (or radiances). The K profile is represented analytically by Hermitian cubic

polynomials connecting nodes at several discrete depths, with unknown values of K and its vertical derivative at
each node as coefficients. These polynomials are integrated analytically to each z, which allows each measured

optical depth to be set equal to a polynomial with node values of K and its derivative at the node depths.
This results in an overdetermined set of equations corresponding to all measured depths in the irradiance (or

radiance) profile, which is solved using classical least-squares methods. Prior to solution, irradiance data are
normalized to minimize effects of surface irradiance variations, and segments near major anomalies (resulting

from strong cloud shadows or ship shadows) are eliminated from the fit. In contrast to the classical derivative
solutions for K, the integral approach ensures a correct representation of total attenuation through missing data

intervals.

3.1 INTRODUCTION

Vertical profiles of downwelling irradiance Ed(z,)_) are

related to Ed(O-, _), incident irradiance just below the sea

surface, by the equation

- fKd(z',_)dz'
Ed(Z,A) = Ed(O-,A)e o (1)

The function Kd(z,A) is the profile of irradiance attenua-
tion coefficients throughout the water column. This same

equation relates upwelling irradiance E_(z,A) to Eu(0-, A)
and Ku(z,A) and relates upwelling radiance Lu(z,A) to

L_(0-, A) and KL(Z,A).
It has become relatively common practice to measure

vertical profiles of Ed(Z,)_), Eu(z,A), and Lu(z,)Q using

underwater radiometers, with the usual objective being to

determine Kd(z,)_), K_(z,)Q, and KL(Z,)_). The classical

approach to determining K(z,)_) from E(z,)_) is described
in detail by Smith and Baker (1984 and 1986). It is nec-

essary to first normalize the E(z,),) profile to surface irra-

diance Es(z,)_) profiles, measured on the deck of the ship
during a cast. K(z,)_) is then determined by estimating

the slope of ln(E(z,A)) at depth z; this is accomplished by

least-squares fitting a straight line through a data window
extending several meters above and below depth z. The

window is then slid down approximately 1 m and a least-

squares K is determined again, and so on over the entire

profile.
A typical window size ranges from 8 m (Smith and

Baker 1984 and 1986) to 20m; the latter is used in the

present work for preliminary K estimates. This precludes

the fitted K profile from following rapid variations through
sharply defined layers of suspended particles, which are

commonly observed in beam attenuation profiles in coastal
and frontal water masses. Even with a 20 m window, more-

over, the local slope-fitting procedure is sensitive to high

frequency fluctuations in incident irradiance which are not

in phase at the on-deck and underwater radiometers.
A new method is presented for determining K profiles

by minimizing the departure of the estimated optical depth

profile
Z

= f K(z',A)dz' (2)
0

from the measured optical depth profile

• [E(0-,,k)]

= ,nL j (3)

The new approach has the advantage of being able to

more closely follow variations in K through very turbid
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layers,as indicatedindependentlyby beamattenuation.
At thesametime,theintegralapproachismoresuccessful
at smoothingthroughsurfaceirradiancefluctuationsthan
isthe localslope-fittingmethod•

3.2 DECK CELL SMOOTHING

The first step in this procedure is to fit the deck cell it-

radiance profiles Es(z,A) directly to Hermitian cubic basis
functions,

_01(4) = ¼(4- 1)_(4+2),

702(4) = z1(4+1)2(4-2),

_11(4) = _'_/(_ -- 1)2(4 + 1),

n_2(4) = -_(4+1)2(4-- 1).

and
(4)

For z in the ith depth element zi-1 _< z < zi, 4 is a

local coordinate ranging from -1 at node zi-1 (the shallow
end point of the element) to +1 at node zi, that is,

with differential

d4 = _dz,

where Li is the length of ith finite element, i.e.,

which Es fluctuations follow closely is one subjective el-

ement in this procedure• The recommended practice is
to pick nodes which allow the fitted curve to closely fol-

low fluctuations with wavelengths greater than or equal to

10 m, and to smooth out shorter scale fluctuations. In the

time domain, 10 m corresponds to approximately 20 s at a
typical winch speed of 0.5ms-1.) The smoothed Es(z,A)

and normalized Ed(Z,A) profiles should, in any event, be

examined jointly before proceeding further. If features in

the fitted Es curve are reflected by opposing features in

the Ed curve indicating overcompensation by the deck cell
normalization, then the data from that segment of both

profiles should be eliminated from the fitting procedure.

Once node depths zn are selected, the Es (Zm,A) vector,

measured at m = 1,... ,M depths zm, may be expressed
in matrix form as

E_(zm,_) = _s(_), (9)

where/_(A) is the measured irradiance vector of length M

E_(z_,A)

E_(_) = E_(zm,_)_ ' (ZO)

E,(z_,_) /

L, = z, - zi-1. (7)

At any depth z corresponding to location 4 in element

i, the smoothed estimate of deck cell irradiance /_s(z,A)

will be given by

E,(z,A) _Ol(4)Es,i-l(A)

+ _o2(4)E_,,(_)

+ _H(4)°_,,__(a)

+ _12(4)°_s,,(_),

(6) _.

(8)

where E,,i(A) is the value of E,(z,A), and b_zEs,i(A) is its
derivative with respect to z, at node depth zi. Both the

function _:s(z,A) and its first derivative are continuous at

nodes joining adjacent finite depth elements•

The profile of measured Es(z,A) is displayed on the

computer's screen. Nodes are placed at N depths zn (n =

0,... ,N - 1) selected to allow the cubic functions of (8)
to closely follow major excursions of incident irradiance,

while smoothing high frequency wiggles which are unlikely
to be well matched to incident irradiance fluctuations ob-

served by the underwater radiometer. The selection of

E_(A) is the unknown vector (of length 2N) of irradiances

and vertical gradients of irradiance at the N node depths

Zn,

E_,o(:_)
E,,I(_)

E_,_(_)

= Es,N-1 (A)
E,(A) = , (11)

_,,0(_)
_,1(_)

and H is a matrix with 2N columns and M rows

with elements

_01_

_11_

hmj = _o2,
_12,

0,

N = [hmj], (12)

z,,, in element n and j -- n - 1;
zm in elementnandj=n- I+N;
zm in element n and j -- n;
z,,_ in element n and j -- n + N;
otherwise.

(13)
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Toreduce(9) to normalformfor least-squaresdeter-
minationof thevector/_s,multiplybothsidesbyH r, the

transpose of H, and rearrange to obtain

Es(A) = [HrH]-IHT/_8(A), (14)

where [HTH] -1 is the inverse matrix of [HrH].

The resulting components Es,n(A) are the coefficients

needed, together with the array of node depths zn, to com-

pute smoothed deck cell irradiance/_s(A) at any depth z

using either (8) or its matrix equivalent (9).

The smoothed E_ profiles are now ready for use in ob-

taining smoothed fits to measured profiles of downwelling

irradiance Ed(z,A), upwelled irradiance E_,(z,A), and up-

welled radiance L_,(z,A). To provide guidance for node

placement in a least-squares fit to cubic Hermitian finite

elements, the profiles are first binned to 1 m intervals, and

preliminary attenuation coefficients K are estimated using

the classic practice of fitting a least-squares slope over a

window extending a few meters (in this case +10m) on

each side of each depth point, e.g., Smith and Baker (1984

and 1986).

3.3 BIN-AVERAGED PROFILES

Profiles of Ed(z,A), E_(z,A), and L,,(z,A) are averaged

into 1 m depth bins in preparation for preliminary least-

squares smoothing to obtain the vertical attenuation coef-

ficients of each quantity. The preliminary smoothing algo-

rithm outlined below is similar to that described by Smith

and Baker (1984):

K_(z,A) = -1 d Ed(z,A),
"Ed( z,.X ) dz

K_(z,A) = -1 d
E_(z,A) dz E_ (z'A)'

-1 d

g_(z,A) - L_(z,A) dz Lu(z'A)

and (15)

natural logarithm of smoothed irradiance or radiance at

depth _, i.e.,

Ad(_,A) = ln[E_(_,A)],

Au(_,A) = ln[E_(_,A)],

AI(_,A) = ln[L_(_,A)].

and (17)

The values of E_(_,A), E_,(_,A), and L_(_,A) [as ob-

tained from Ad(_,A), Au(-2,A), and A_(_,A) by the above

least-squares smoothing algorithm] are then each normal-

ized to the surface by the ratio of deck cell irradiance

Es (0,550):E_ (3,550) calculated using (14).

The resulting smoothed profiles of K' and E' are used

as a guide in selecting node depths for fitting improved K

and E profiles to the measured irradiance.

3.4 OPTICAL DEPTH PROFILE FIT

Measured optical depth r(z) at depth z is calculated

as

[E(0-)]
r(z) = ln[E(z) J'

(18)

where E may be Ed, E_, or Lu, and E(0-) is irradiance

(or radiance) just beneath the sea surface. A first guess

estimate of E(0-) is obtained from the preliminary bin-

averaged, window-fit K' and E' profiles as

E(0-) _ (10)e l°K'= E' (lO). (19)

[Because of the 20m fitting window, K'(10) and E'(10) at

10 m are the shallowest estimates in that profile.]

Optical depth is related to the irradiance (or radiance)

attenuation coefficient K(z) profile by the

z

= f K(z')dz'. (20)

are determined by least-squares fits to the equations

[Ed(z,_)E.(550) 1
In t _ J

If once again the water column is divided into N - 1

finite elements, separated by N nodes at depths zn (n =

0,... ,N - 1), K(z) may be estimated in the depth element

Zn-1 <-- Z < Z n as

= Aa(_,A) - K'd(z,A)[z - -_],

r E_(z,A)E_(550) ]

In[ _ ] = A,_(2,A)-K'(z,A)[z--2], (16) K(z) = _01(_)Kn-1 + 702(_)Rn

[L,(z,A)E,(550)] 0 -- 0 -- (21)
ln[ _ j = A,(_,A) - g'L(z,A)[z -_1, + _/ll(_)_zzgn_l + 712(_)0--_gn,

where _ is the mid-depth of a 20m window, Es(550) is the where 7q(_) and _ are defined in (4) and (5), respectively.

smoothed 550 nm deck cell irradiance at depth _, E_(z,550) The same form of cubic Hermitian polynomial expansion
is the 550nm deck cell irradiance coincident with measure- is used in (8) and (21) to represent the variables Es(z) and

ments at depth z, and the intercepts A correspond to the K(z), respectively.
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If (21) is substituted into (20), the resulting equation
obtains for Zn-1 <_ z < zn:

r(z)

zi-- 1 zi--I

Z i Zi -

Zl-- 1 Zi--1

Z Z

+ Kn-1/"fOl(_)dz' + -Kn/7o2(_)dz I

Zn-- 1 Zn--1

Z Z

o_ ++ _zK_ -

zn- 1 Zn--1

(22)

By the definition of _ and its differential in (5), vari-

ables may be changed to express the integral terms in (22)
in the form

Li f_(_)dz' : T
Zn--1 --1

(23)

Thus, (22) may be formally integrated from _' = -1 to _,
to obtain new coefficients

g01(_) = _ 2 + 2_ + ,

g02(_) = @[_4 3_2 2_-_]2

Li[_ _3 _2gll(_,Li) = -_ 3 2 + _ +

Li[_____ _3 _2g12(_,Li) = -_ + 3 2 _-

(24)

i/1,

with values at _ -- 1 (i.e., the integrals over a complete

finite element from - 1 to 1):

gm(1) = 1,

go2(1)= 1,

Li
gn(1,Li) = -_-,

-Li
gl2(1,Li) = --6--.

and
(25)

With substitutions from (23) through (25) and some re-

arrangement of the terms involved, (22) may be expressed

for z = Zm, zn-1 _ Zrn _ Zn, as

[WmT(Zm) =Wm E hrn,i'-Ki + hm,i+N Ki , (26)
i=O

where

hmi =

and

hm,i+N =

@-,
Li+l + Li

2

[ @gOl(_)

+ L__-I

L,_
--5-go2(_),

n=l,i=0;

n>l,i=0;

n> l,O<i<n-1;

--, n> l,i=n-1;

i=n;

@gll (_,L1),

L_

12 '

-
12 '

--_-'-g11({,Ln)

2
Ln-1

•-}- --,
12

-_--g,2 (_,L,_),

n=l,i=O;

n> 1, i=0;

n> l, 0<i<n-1;

n> l,i=n-1;

i=n.

(27)

(28)

The coefficients Wm in (26) weight the relative impor-
tance of each mth measurement in the T profile. A rela-

tively simple weighting prescription is used at the time of

this writing. The weighting coefficient at each depth Zm is

first computed as

1

Wm- so(zm)' (29)

where so(Zm) is the standard deviation of measured deck

cell irradiance Es(z,A) relative to the smoothed profile

[computed using (8-15)] over the 10 m depth interval cen-
tered at zm. This weighting gives reduced importance
to irradiance measurements made when surface irradiance

fluctuates rapidly, e.g., due to variable cloud cover, and in-

creased importance to measurements made when incident

irradiance is relatively steady. In depth intervals where
both the surface and normalized subsurface irradiance pro-

files exhibit relatively large amplitude fluctuations, wm

are further multiplied by 10 -6 to completely discount ob-

servations where incident irradiance variations viewed by
the deck and underwater radiometers are obviously not in

phase.

Ship shadow contamination can be visually recognized
in many irradiance profiles measured under overcast condi-

tions. The characteristic shape of this phenomenon is illus-

trated in Voss et al. (1986). In profiles where ship shadow
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is present, the resulting curvature in the upper layer can
distort the K and irradiance profile fits over the upper

100 m. In principle, a ship shadow model could be used

to correct the profile explicitly, but research to develop

and test the implementation of such a method is beyond

the scope of the present report. As an interim substitute,
multiply the weighting coefficients wm by 10 -a at depths

where ship shadow curvature is visually apparent. With

the surface layer boundary conditions used at present (see

below), this has the effect of passing a straight line to rep-

resent E(z,A) from the surface intercept to the depth of

the first node selected by the operator, without regard to

any curvature that may be apparent in the measured data.

In matrix form, (26) for m = 1,... ,M profile observa-
tions at depths zm are combined as

= HK. (30)

The M elements of the vector _ are rm = WmV(Zrn), calcu-

lated from the data with (18)• The elements of the M x 2N

matrix H are wmhm_, where hmi are defined in (27) for

i < n, in (28) for N < i < n+N, and hm_ = 0 for

n < i < N and i > n + N. Finally, the vector K is defined
as

K0
Kl

Kn

KN-1

g = , (31)
o_ 0
o_Yz 1

_o_
Dz n

o_
_'_z N-1

i.e., the unknown vector of attenuation coefficients and

their gradients at the N nodes.
As with Es, _ is determined by the least-squares so-

lution to (30) as

K : [HTH]-IHr_, (32)

which can be solved using any standard matrix inversion

program. In implementation, the singular value decom-

position method and computer codes used were given by

Press et al. (1992)•

To constrain the solution at the surface node, which

depends on the entire data profile below it, it is required
that

K0 = K1, (33)

which implies further that

_zz K° = OzzKI' (34)

-= 0.

In other words, a layer of constant K is imposed be-
tween the surface and the depth of the first node selected

by the operator.
The bottom boundary values are not constrained, and

frequently take on unreasonable values. The solution at the

bottom node is determined only by the data in the deepest

finite element, when the data values are near the minimum

detectable level of the instrument, and consequently are

noisy. To minimize the influence of the bottom node on

the overall profile, a thin (less than 10 m) bottom element

is selected by picking the second deepest node (node index
N - 2) very close to the deepest one (index N - 1). Then

ignored is the fitted curve in this bottom boundary layer

simply by dropping node N - 1 when the fitted K and E

curves are calculated using (22) and (30).
This completes the mathematical description of the fit-

ting procedure. In use, the first estimate bin-averaged

E_(z) profile is overlaid on the measured E(z) profile on

the computer screen. To aid the operator in selecting node

depths, profiles of bin-averaged K'(z) and smoothed deck

cell irradiance Es(z) are also displayed. If data from a
beam transmissometer or fluorometer are available, the

profiles of beam attenuation coefficient cp(z) and chloro-
phyll a fluorescence F(z) are displayed as a further guide to

selecting node depths. The operator then interactively se-

lects an array of node depths, observes the resulting fit ob-

tained using (18-32), and iteratively adjusts node depths
and refined estimates of E(0-) until a best fit is obtained.

After this procedure has been applied to all radiometer

channels, each profile of Kd(z,A), Ku(z,A), and KL(Z,A) is

represented by a vector of node depths _ and the associ-

ated vector K, as given in (31). The fitted curve for each

K(z,A) can then be calculated using (22). To calculate

the fitted Ed(z,A) profile, (30) is first used to calculate the

td(Z,_) profile and then

Ed(zA) = Ed(O-,),)e -__(_'_'). (35)

The same procedure is used to retrieve E,,(z,A) and

Lu(z,A) profiles from the Hermitian finite element repre-
sentation.
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Chapter 4

Automated and Interactive Bio-Optical

Processing Package

CURTISS O. DAVIS

W. JOSEPH RHEA

Naval Research Laboratory, Washington, DC

ABSTRACT

Underwater profiles of upwelling and downwelling irradiance, as well as upwelling radiance have been collected

from a wide variety of ocean environments. To obtain apparent optical properties from these data requires

removing data spikes, binning and smoothing, and removing possible artifacts from changes in surface illumi-

nation, ship shadow, or reflections and wave focusing. To accomplish these data processing requirements, the
AIBOP software package was developed. In the AIBOP system, the data is processed in two parts: first, an

automated de-spiking and binning routine, and second, interactive spectral processing to remove the effects

of changes in surface illumination, ship shadow, or reflection and near-surface effects such as wave focusing.
Once the data is processed, routines are provided for calculating extinction coefficients, surface radiance and

irradiance values, and remote sensing reflectance.

4.1 INTRODUCTION

Optical data has been collected with a BOPS as part of

a number of interdisciplinary oceanographic expeditions,

such as, the JGOFS EqPac and Arabian Sea programs.

The BOPS records 44 channels of data and extensive pro-

cessing is required to retrieve AOPs from the measured

underwater light fields. To provide accurate, rapid pro-

cessing of these large data sets, a AIBOP software package

written by W. Rhea using IDL from Research Systems,

Inc. The full processing of the data was broken down into

two distinct levels, the first one being an automated de-

spiking and binning routine, and the second one being a

more detailed, user-interactive spectral processing section

where underwater optical effects, such as ship shadow, were
removed from the data.

The philosophy behind the development of the AIBOP

software centered on the desire to process all possible op-

tical casts, not just those made under ideal environmental

conditions. Due to the number of different projects com-

peting for wire time during most research cruises, often

only one optical cast was made per day. Under these con-

ditions, it is necessary to use all possible data, even if it

contains correctable optical contamination, such as inter-

mittent clouds, wave focusing effects, and occasionally ship

shadow or ship hull reflection. The AIBOP software was

designed specifically to remove as many of these effects as

possible.

4.2 INSTRUMENTATION

Optical data were collected with a BOPS, an updated

version of the BOPS originally developed by Smith et al.

(1984). The package is built around a Biospherical In-
struments MER-1048 spectroradiometer, which measures

upwelling and downwelling spectral irradiance as well as

upwelling spectral radiance. The data collected with the

BOPS consists of 44 parameters and includes the following

measurements made by the MER:

• 13 channels of downwelling irradiance, Ed, rang-

ing from 410-710 nm;

• 8 channels of upwelling irradiance, E_, ranging
from 410-694 nm;

• 8 channels of upwelling radiance, L_, ranging

from 410-683 nm;

• Photosynthetically available radiation (PAR);

• Depth; and

• Instrument tilt and roll.

In addition, conductivity and temperature were mea-

sured with a Sea-Bird CTD, chlorophyll fluorescence was

measured with a Sea Tech fluorometer, and beam transmis-
sion was measured with a Sea Tech 25 cm transmissometer.

Simultaneously, a deck cell collected 4 channels of surface

downwelling irradiance, Ed(O +), ranging from 410-683 nm.

The MER acquired all the in situ data 16 times a second,

averaged it to four records a second, and sent it up the
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31, 43, 44

******** DATA PROCESSING NOTES *********

Post-cruise (WJR) - Data processed using calibration file listed below.

Initial data-cleaning limited to occasional data spike or gap removal.

Data then binned to 1 meter depths.

09/91 (WJR) - Reprocessed Lu channel using time-averaged comparison between

original calibration (06/11/87) and SDSU/CHORS calibration (07/17/91).

******** VERTICAL CAST CASTCARD ********

FILE w910321a; 03-21-1991
CRUISE IDENTIFICATION..... WHITE POINT 0UTFALL - 03/91
CALIBRATION FILE..........8302W10a.cfl
CALFILE DESC..............MER-1048-8302 Recalibrated for JPL 12 MAR 1991

NAME .................w910321a
DATE ......................03-21-1991

STATION...................STA 1
Position ............. LONG:118-20.41W

..................... LAT :33-41.20 N

SKY CONDITION.............CLEAR
OPERATOR NAME.............WJR
SUN POSITION..............2

HANDSHAKE ................. 1
ANALOG CHANNELS ........... 35

FREQUENCY AVERAGED........ 1023
ANALOG CYCLES AVERAGED.... 4
START TIME................12:23:41
DOWNCAST ENDING MARKED AT RECORD 1391

UPCAST ENDING MARKED AT RECORD 2423
FINAL TIME................12:35:25

TRANSMISSION ERRORS....... 0
NOP_L TERMINATION OF DATA LOGGING.
TOTAL RECORDS RECORDED.... 2462

Record,Ed410,Ed441,Ed488,Ed520,Ed550....

4,102.0160,118.3141,143.5586,138.1729....

Fig. 31. An example of a working data file.

cable to a deck box and a PC which stored the data on a

hard disk.

4.3 LEVEL-1 PROCESSING

The first level of processing the BOPS data began with

a decision to use either the downcast or upcast, depend-

ing upon various criteria including absence of clouds in the

data, absence of ship shadow, and absence of data spikes

or dropouts cause by occasional pauses in the data trans-
mission from the MER to the onboard computer. The next

step was an automated process to remove any remaining

data spikes or dropouts from the selected cast data and re-

place them (typically single values) with interpolated val-
ues.

The data was then checked for single points lying out-

side 3a of a 7-point bin, and any outlying points were then

replaced with interpolated values. This was done to re-

duce much of the effects caused by wave focusing in clear
waters. This cleaned data was then mean-binned into 1 m

intervals, centered on the half meter. This completed the

level-1 processing.

4.4 LEVEL-2 PROCESSING

The level-2 processing involved interactive spectral pro-

cessing of the data. First, ship roll was removed from sur-
face light channels (when necessary) by applying a seven-

point running mean filter to each of the four surface light
channels. Next, cloud effects were removed from the un-

derwater light field by normalizing each underwater opti-
cal channel to either the mean or maximum of the closest

matching surface light wavelength. The decision whether
to use the mean or maximum of surface light value de-

pended on the nature of the light field during the cast. In

general, the maximum value was used when the sky was ei-
ther very clear or fully overcast. The mean value was used

only during partly cloudy conditions where bright clouds

caused a brief increase in measured light levels on either
side of the cloud with a shadow in the middle. In these

cases, the mean light value more closely matched the over-

all clear-sky light levels than did the maximum light value.

Also, when needed, the surface light channel records
were shifted slightly in time before normalizing the under-
water data to account for the difference between the time a

cloud passed over the surface and underwater arrays. This
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52, 43, 44

33.68667,-118.34016, 80.51598, 80.84930

................................. BEGIN-HEADER ..................................

DESCRIPTION OF FIRST LINE IN FILE (BEFORE HEADER):

Number of Header Records in this File

Number of Data Records following this header

Number of Columns within each Data Record

DESCRIPTION OF SECOND LINE IN FILE (BEFORE HEADER):

Latitude of Cast (Degrees; South=[-]; North=[+])

Longitude of Cast (Degrees; West=[-]; East=[+])

Date and Local Time of Cast (Julian Day + Local Time in percent of 24hr)

Date and G.M. Time of Cast (Julian Day + G.M. Time in percent of 24hr)

.................................. CAST_INFO ....................................

Filsname ....................... >

Cruise Identification .......... >

Station Identification ......... >

Date of Cast (Mon/Day/Year) .... >

Local Start Time (Hr:Min:Sec)-->

Latitude (Degrees Minutes ) .... >

Longitude (Degrees Minutes) .... >

Sky State During Cast .......... >

w910321a.mer

WHITE POINT 0UTFALL - 03/91

STA 1

03-21-1991

12:23:41

33-41.20 N

118-20.41W

CLEAR

.............................. PROCESSING-NOTES .................................

Post-cruise (WJR) - Data processed using calibration file listed below.

Initial data-cleaning limited to occasional data spike or gap removal.

Data then binned to 1 meter depths.

09/91 (WJR) - Reprocessed Lu channel using time-averaged comparison between

original calibration (05/11/87) and SDSU/CHORS calibration (07/17/91).

05/93 (WJR) - Ship-roll removed from all surface (Deck) channels.

05/93 (WJR) - All optical channels normalized to max surface (Deck) channels.

05/93 (WJR) - All optical channels smoothed to remove wave effects.

05/93 (WJR) - Ship shadow/reflection removed from affected optical channels.

08/93 (WJR) - _Transmission corrected by new calibration

08/93 (WJR) - ZTransmission converted to Beam Attenuation

.......................... DATA_COLUMN_DESCRIPTIONS .............................

Column, Column_Title, Description

...............................................................................

O, Depth, Mean Depth of 1-meter record bin (meters)

1, Pts/m, Number of points averaged per bin (O=interpolated data)

2, Tilt_, Instrument Tilt (degrees; range -45 to 45)

3, Roll_, Instrument Roll (degrees; range -45 to 45)

4, TempC, Water Temperature (Deg C)

5, S_ppt, Calculated Salinity (PPT)

6, Cond_, Measured Conductivity

7, Sigma, Calculated Water Density

8, BeamC, Beam Attenuation Coefficient from 25cm Transmissometer

9, Fluor, Stimulated Fluoresence (Fluoro units; range 0 to 100)

I0, PARuw, Downwelling Scalar PAn at depth (E17 quanta/sec/cm2)

11-23, Ed410-Ed710, Downwelling Spectral Irradiance at depth (uW/cm2/nm)

24-31, Eu410-Eu459, Upwelling Spectral Irradiance at depth (uW/cm2/um)

32-39, Lu410-Lu683, Upwelling Spectral Radiance at depth (uW/cm2/nm/str)

40-43, E+410-E+683, Spectral Irradiance above sea surface (uW/cm2/nm)

DATA_COLUMN_TITLES ................................

Depth,Pts/m,Tilt_,Roll_,TempC,S_ppt,Cond_,Sigma,BeamC,Fluor,PARuw,Ed410 ....

................................. END_HEADER ....................................

0.50000, 0.00000, 1.81487, 5.48543, 0.00000, 0.00000, 0.00000 ....

Fig. 32. An example of a final data file.
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shifting was used only for normalizing and was not applied

to the final surface light data. The next processing step

was to smooth out sea-surface wave effects from underwa-

ter optical channels by applying either a three-, five-, or

seven-point boxcar mean filter to all underwater optical

channels.

As a final step in casts where obvious effects such as

ship shadow, ship hull reflection, or wave focusing were

present in the downwelling irradiance (Ed) data, the up-

per (shallow) portion of each affected Ed channel was re-

placed with extrapolated, or curve-fit data. This was ac-

complished using a automated program that makes use of

the lower non-shadowed optical data and finds the most

accurate extrapolation to a predefined surface value es-

timated from the deck cell data. The extrapolation was

carried out using a least-squares polynomial fit performed

in log space. For those underwater Ed channels where

there was no corresponding above-water Ed(O +) channel,

estimated Ed(0 +) values were automatically calculated us-

ing I_DTRAN (Gregg and Carder 1990) for the time, day,

location, and sky conditions.

4.5 CALCULATION OF K

The diffuse attenuation coefficient for downwelling it-

radiance (Kd) was calculated from the Ed profile using a

least-squares fit of the log-transformed data (Smith and

Baker 1894). A 9 m window (z ± 4 m) was used for cal-

culating Kd at each depth level. These Ku values were

not stored but rather were calculated on demand when

requested. Whenever measured chlorophyll and phaeopig-

ment data were available, the calculated Kd values were

overplotted with Kd values as predicted by the model of

Morel (1988).

4.6 DATA FILE FORMATS

There are two file formats used by the AIBOP software

package. The first is a working format (Fig. 31), which is

used by the software during all of the processing steps.

This format keeps the data in the same configuration as

output by Biospherical Instruments data collection soft-

ware. The second format is a final format (Fig. 32) which

is distributed to the public. The final format differs from

the working format in several ways:

• The data column are rearranged in a more logi-

cal order (e.g., having depth as the first column),

• Percent transmission from the transmissometer

is converted to beam attenuation, and

• Greenwich Mean Time (GMT) is calculated for

each cast and is shown along with local time.

Also a special plotting line is added which can aid in

quickly determining the exact location and time of each

cast. All files are in comma-separated ASCII for ease of

reading by others.

4.7 LOG FILES

A log file was automatically created for each cast which

lists all of the level -2 spectral processing steps in the order

they were performed. The log file (Fig. 33) allows for later

recreation of the processed data, as well as serving as a

permanent record of the processing session. These log files

are stored separately from the data files but are available

to anyone requesting them.

MER OPTICAL PROCESSING LOG FILE

FOR: w910321a.mer

BY: WJR DATE: 05/93

PROCESSING PERFORMED ON ALL OPTICAL CHANNELS:

REMOVED_ SHIP _ROLL_FROM_ SURFACE

NORMALIZED_UW_TO _SURF_MAX IMUM

REMOVED_UW_WAVE_EFFECTS_ (5PTS)

INDIVIDUAL OPTICAL CHANNELS PROCESSED:

1, (Ed 410) SHADOW_RF./_OVED_(7,13)

2,

3,
4,

5,

6,
7,

8,

9,

10,
11,
12,
13,

17,
18,
19,
20
21

22
23

24
25
26

27
28
29

30
31

32

35
END

(Ed

(Zd

(Zd

(Zd

(Zd

(Zd

(Zd

(Zd

441)

488)

520)

550)

560)

589)
633)
656)

(Ed 671)

(Ed 683)

(Ed 694)

(Ecl 710)
(Lu 410)

(Lu 441)

(Lu 488)

(Lu 520)

(Lu 550)

(Lu 633)

(Lu 656)

(Lu 583)

(Eu 410)

(Eu 441)

(Eu 488)

(Eu 520)

(Eu 550)

(Eu 589)

(Eu 671)

(Eu 694)

SHADOW_REMOVED_ (7,13)

SHADOW_REMOVED_ (11,15)

SHADOW_REMOVED_ (7,17)

SHADOW_REMOVED (3,13)

SHADOW_REMOVED_ (I0,16)

SHADOW_REMOVED_ (5,13)

SHADOW_REMOVED_ (9,19)

SHADOW_REMOVED_ (7,15 )

SHADOW RY_2IOVED_(3,9)

SHADOW_REMOVED_ (2,12)

SHADOW_REMOVED_ (2,i0)

SHADOW_REMOVED_ (2,I0)

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

N0T PROCESSED

N0T PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

NOT PROCESSED

(PAR uw) NOT PROCESSED

OF MER OPTICAL PROCESSING LOG FILE

Fig. 33. An example of a log file.
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Chapter 5

The SIO Method

ERIC A. BRODY

University of California, Santa Barbara, Santa Barbara, California

ABSTRACT

The SIO group has employed a bulk method for deriving AOPs from spectroradiometry profiles. The bulk

approach has been long employed in the past and much of what is known about AOPs is a result of using

this approach. The bulk method has been used in the past by the SIO group, although, they are not doing so

presently. The bulk approach fits a straight line to the log-transformed irradiance and radiance profiles within

the oceanic mixed layer. The fluxes just below the sea surface are estimated from the exponentiated intercept

and the slope gives a mixed layer averaged diffuse attenuation coefficient, Ka(zo, A). This method provides only

a single estimate of Ka(zo, A) and cannot be used to determine the depth dependence of Kd(Z, A). One distinct

advantage of the bulk method is that it can easily be applied using any spreadsheet program on a modest

computer (PC).

5.1 INTRODUCTION

For the SIO MER-1012 data, a very simple and conser-

vative method, based on the traditional Smith and Baker

(1984 and 1986) method, was used. Now with the new

MER-2040 and the addition of spectral irradiance above

the surface, this approach is no longer employed and a

switch to the BBOP method has been made. A summary

of the data processing methodology is given below.

5.2 DATA PROCESSING

Preparation of the data includes averaging the data to

a 1 m bins and calculating the mixed-layer depth by visu-

ally inspecting the temperature, salinity, and beam atten-

uation data. In addition, an inspection for ship shadows,
wave focusing, and surface glitter is made to determine

the shallowest good depth. Sometimes the deepest depth

is not the base of the mixed layer, but the depth at which

the downwelling irradiance becames less than 10 times the

noise levels. This is especially important when solar zenith

angles are large, or cloudy conditions cause minimal sur-
face flux.

In addition, the surface PAR (E0 PAR) is checked to be

more or less constant during the profiling. If PAR is less
than 0.1 x 1016 Q cm -2 s -1 or varied too much, then the

data is rejected. Since surface irradiance for each chan-
nel was not available, the data was not normalized to the

surface as outlined by Smith and Baker (1984).
Using the (visually) selected shallowest and deepest

depths, a least-squares regression fit is applied to the depth

versus the natural log of a given channel (see for example,

Smith and Baker 1984 and 1986). The slope is the de-

rived diffuse attenuation coefficient (K) for the mixed layer

depth and the exponential of the intercept is the data ex-

tropolated to just below the surface (z =0-). The ratio

of water leaving radiance to downwelling irradiance just
below the surface, Lw(O-):Ed(O-), is the remote sensing

reflectance, Rrs(0-). The Fresnel coefficient is not used to

get values at (z = 0+).

Verifcation of the data involves correlating the mixed

layer depth chlorophyll and phaeopigment or particle ab-

sorption with the Rr8 (0-) and K for the mixed layer depth

and comparing it to the algorithms (Gordon et al. 1988;

Smith and Baker 1984 and 1986).

Editors' Note: Although this Chapter is not as detailed as the
others, the editors' thank the author for making an effort to
make up for a lack of material from the SIC) group.
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APPENDIX A

Attendees to the First SeaWiFS

Data Analysis Round-Robin (DARR-94)

The attendees to DARR-94 are presented alphabetically.

Karen Baker

UCSD/SIO

La Jolla, CA 92093

Voice: 619-534-2350

Fax: 619-534-2996

Net: karen(_icess.ucsb.edu

Eric Brody

UCSB/ICESS

Santa Barbara, CA 93106

Voice: 805-893-4449

Fax: 805-893-2578

Net: ebrody(_icess.ucsb.edu

Curtiss Davis

Naval Research Laboratory

Code 7212

Washington, DC 20375
Voice: 202-767-9296

Fax: 202-404-7453

Net: davis@rira.nrl.navy.mil

Vincent Fournier-Sicre

UCSD/Scripps Oceanography

La Jolla, CA 92093-0218

Voice: 619-534-8947

Fax: 619-534-2997

Net: fournier<_spode, ucsd.edu

Stanford Hooker

NASA/GSFC/Code 970.2

Greenbelt, MD 20771

Voice: 301-286-9503

Fax: 301-286-1775

Net: stan@ardbeg.gsfc.nasa.gov

John Morrow

Biospherical Instruments, Inc.

5340 Riley Street

San Diego, CA 92110
Voice: 619-686-1888

Fax: 619-686-1887

Net: morrow_ biospherical.com

James Mueller

SDSU/CHORS/Suite 206
6505 A1varado Road

San Diego, CA 92120-5005

Voice: 619-594 2230

Fax: 619 594-4570

Net: jim@chors.sdsu.edu

Margaret O'Brien

UCSB/ICESS

Santa Barbara, CA 93106

Voice: 805-893-2544

Fax: 805-893-2578

Net: mob@icess.ucsb.edu

W. Joseph Rhea

Naval Research Laboratory
Code 7212

Washington, D.C. 20375

Voice: 202-767-9296

Fax: 202-404-7453

Net: rhea@riva.nrl.navy.mil

Dave Siegel

UCSB/ICESS
Santa Barbara, CA 93106

Voice: 805-893-4547

805-893-2544

Fax: 805-893-2578

Net: davey_icess.ucsb.edu

Ray Smith

UCSB/ICESS
Santa Barbara, CA 93106

Voice: 805-893-4709

Fax: 805-893-2578

Net: ray(_icess.ucsb.edu

Jens Sorensen

UCSB/ICESS

Santa Barbara, CA 93106
Voice: 805-893-4449

Fax: 805-893-2578

Net: jens@icess.ucsb.edu

AIBOP

ANSI

AOP

ASCII

BATS

BBOP

BOPS

CalCoFI

CHORS

COARE

CTD

C.V.

CVT

DAAC

DARR

DARR-94

DEC

EC

EqPac

FORTRAN

ftp

GLOBEC

GMT

gee

GNU

GOMEX

GSFC

GUI

GLOSSARY

Automated and Interactive Bio-Optical Processing
American National Standards Institute

Apparent Optical Property
American Standard Code for Information Inter-

change

Bermuda Atlantic Time-Series Station

Bermuda Bio-Optics Project

Bio-Optical Profiling System

California Cooperative Fisheries Institute

Center for Hydro-Optics and Remote Sensing (San

Diego State University)

Coupled Ocean-Atmosphere Response Experiment

Conductivity, Temperature, and Depth

coefficient of variation

Calibration and Validation Team

Distributed Active Archive Center

Data Analysis Round-Robin

The First DARR (July 1994)

Digital Equipment Corporation

Excluding CHORS (data)

Equatorial Pacific (Process Study)

Formula Translation (computer language)

file transfer protocol

Global Ocean Ecosystems
Greenwich Mean Time

GNU C Compiler
GNU's not UNIX

Gulf of Mexico Experiment

Goddard Space Flight Center

Graphical User Interface
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IBM
ICESS

IDL
IRIX

JGOFS

KQ
LCD
MER

MOBY
NASA

NRL
NSF
PAR
PC

rms
SDSU

SeaBASS
SeaWiFS

SGI
SIO

SIRREX
SNR
SUN
SXR

TOGA
UCSB

UNESCO

UNIX
WOCE

Ad(-Z,A )

A_(-_,_)

A,(-_,A)

E(A)

Ed(O-, A)

Ed(z, A)

E_(z,A)

E,,,(A)

E_(0-, A)

E,(z,A)

go

hmj
H

Siegel, O'Brien, Sorensen, Konnoff, Brody, Mueller, Davis, Rhea, and Hooker

International Business Machines K

Institute for Computational Earth System Science Kd(z,A)

(University of California at Santa Barbara)

Interactive Data Language K_(z,A)

Not an acronym, a computer operating system.

KL (z,A)
Joint Global Ocean Flux Study

Kd Quality (flag) K_(z,A)

Least Common Denominator (file) Ku(z,A)

Marine Environmental Radiometer K_(z,A)
Marine Optical Buoy

National Aeronautics and Space Administration Li

Naval Research Laboratory L_(0-, A)
National Science Foundation

Photosynthetically Available Radiation L_(z, A)

(IBM) Personal Computer M

root mean squared

San Diego State University N

SeaWiFS Bio-Optical Archive and Storage System R_(z,A)

Sea-viewing Wide Field-of-view Sensor

Silicon Graphics, Incorporated
Scripps Institution of Oceanography wm

SeaWiFS Intercalibration Round-Robin Experiment z

Signal-to-Noise Ratio zi

Sun Microsystems zm
SeaWiFS Transfer Radiometer

Zn
Tropical Ocean Global Atmosphere program

University of California at Santa Barbara _fo

United Nations Educational, Scientific, and Cul- A

tural Organizations
Not an acronym, a computer operating system.

World Ocean Circulation Experiment
(T

fit

SYMBOLS

Linear regressioninterceptsat the center of a fitted

depth intervalfor In of Ad(z,A) defined in (17).

Linear regressioninterceptsat the center of a fitted

depth intervalfor In of A_(z,A) defined in (17).

Linear regressioninterceptsat the center of a fitted

depth intervalfor In of Al(z,A) defined in (17).

Spectral irradiance.

Incident downwelling spectral irradiance just be-
neath the sea surface.

Incident downwelling spectral irradianceprofile.

Vertical profileof surface irradiance.

The value of Ea(z,A) at node depth z,.

Defined as H'-_ ()_).

The measured irradiance vector of length M.

Upwelling spectral irradiance just beneath the sea
surface.

Upwelling spectral irradiance profile.

Integrals of _'O, defined in (24).

Matrix elements defined in (28).

Matrix of coefficients [hmj].

0"0

Diffuse attenuation coefficient.

Vertical profile of the diffuse attenuation coefficient

for the downwelling irradiance spectrum.

Kd(z,A) determined by least squares regression over

a depth interval.

Vertical profile of the diffuse attenuation coefficient

for the upwelling radiance spectrum.

KL (z,)_) determined by least squares regression over

a depth interval.

Vertical profile of the diffuse attenuation coefficient

for the upwelling irradiance spectrum.

K_ (z,A) determined by least squares regression over

a depth interval.

The length of the ith element.

Upwelling spectral radiance just beneath the sea

surface.

Upwelling spectral radiance profile.

Total number of discrete data points in a vertical

radiometeric profile.

The number of node depths.

Vertical profile of the remote sensing reflectance

spectrum.

The weighting coefficient at each depth zm.

The vertical coordinate.

The depth of a particular node.

The depth of the ruth data point in a vertical ra-

diometric profile.

The node depth number (n = 0,... ,N - 1).

Hermitian cubic basis function.

Wavelength of light.

A local depth coordinate ranging from -1 at node

z_-i to +1 at node z,.

One standard deviation.

The density of sea water determined from the in

situ salinity and temperature, but at atmospheric

pressvre.

The density of sea water determined from the in

situ salinity and the potential temperature (9), but
at atmospheric pressure.

The estimated vertical profile of the spectral optical

depth.
Vertical profile of the spectral optical depth.
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The DARR-94 results do not show a clear winner among data analysis methods evaluated. It is apparent, however, that some

degree of outlier rejection is required in order to accurately estimate Lu(0-,_.) or Ed(0,_.). Furthermore, the calculation,

evaluation and exploitation of confidence intervals for the AOP determinations needs to be explored. That is, the SeaWiFS

calibration and validation problem should be recast in statistical terms where the in situ AOP values are statistical estimates

with known confidence intervals.
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